899 research outputs found

    New insights into foreground analysis of the WMAP five-year data using FASTICA

    Full text link
    In this paper, we present a foreground analysis of the WMAP 5-year data using the FASTICA algorithm, improving on the treatment of the WMAP 3-year data in Bottino et al 2008. We revisit the nature of the free-free spectrum with the emphasis on attempting to confirm or otherwise the spectral feature claimed in Dobbler et al 2008b and explained in terms of spinning dust emission in the warm ionised medium. With the application of different Galactic cuts, the index is always flatter than the canonical value of 2.14 except for the Kp0 mask which is steeper. Irrespective of this, we can not confirm the presence of any feature in the free-free spectrum. We experiment with a more extensive approach to the cleaning of the data, introduced in connection with the iterative application of FASTICA. We confirm the presence of a residual foreground whose spatial distribution is concentrated along the Galactic plane, with pronounced emission near the Galactic center. This is consistent with the WMAP haze detected in Finkbeiner 2004. Finally, we attempted to perform the same analysis on full-sky maps. The code returns good results even for those regions where the cross-talk among the components is high. However, slightly better results in terms of the possibility of reconstructing a full-sky CMB map, are achieved with a simultaneous analysis of both the five WMAP maps and foreground templates. Nonetheless, some residuals are still present and detected in terms of an excess in the CMB power spectrum, on small angular scales. Therefore, a minimal mask for the brightest regions of the plane is necessary, and has been defined.Comment: Accepted for publication in MNRAS, 25 pages, 17 figures, 4 tables. Version with full resolution figures available at: http://www.mpa-garching.mpg.de/~bottino/downloads/bottino_etal.pd

    The primary steps of photosynthesis in bacteriorhodopsin

    Get PDF

    Screw dynamo in a time-dependent pipe flow

    Full text link
    The kinematic dynamo problem is investigated for the flow of a conducting fluid in a cylindrical, periodic tube with conducting walls. The methods used are an eigenvalue analysis of the steady regime, and the three-dimensional solution of the time-dependent induction equation. The configuration and parameters considered here are close to those of a dynamo experiment planned in Perm, which will use a torus-shaped channel. We find growth of an initial magnetic field by more than 3 orders of magnitude. Marked field growth can be obtained if the braking time is less than 0.2 s and only one diverter is used in the channel. The structure of the seed field has a strong impact on the field amplification factor. The generation properties can be improved by adding ferromagnetic particles to the fluid in order to increase its relative permeability,but this will not be necessary for the success of the dynamo experiment. For higher magnetic Reynolds numbers, the nontrivial evolution of different magnetic modes limits the value of simple `optimistic' and `pessimistic' estimates.Comment: 10 pages, 12 figure

    Tick species from cattle in the Adama Region of Ethiopia and pathogens detected

    Get PDF
    Ticks will diminish productivity among farm animals and transmit zoonotic diseases. We conducted a study to identify tick species infesting slaughter bulls from Adama City and to screen them for tick-borne pathogens. In 2016, 291 ticks were collected from 37 bulls in Adama, which were ready for slaughter. Ticks were identified morphologically. Total genomic DNA was extracted from ticks and used to test for Rickettsia spp. with real-time PCR. Species identification was done by phylogenetic analysis using sequencing that targeted the 23S-5S intergenic spacer region and ompA genes. Four tick species from two genera, Amblyomma and Rhipicephalus, were identified. Amblyomma cohaerens was the dominant species (n = 241, 82.8%), followed by Amblyomma variegatum (n = 22, 7.5%), Rhipicephalus pulchellus (n = 19, 6.5%), and Rhipicephalus decoloratus (n = 9, 3.0%). Among all ticks, 32 (11%) were positive for Rickettsia spp. and 15 (5.2%) of these were identified as R. africae comprising at least two genetic clades, occurring in A. variegatum (n = 10) and A. cohaerens (n = 5). The remainder of Rickettsia-positive samples could not be amplified due to low DNA yield. Furthermore, another 15 (5.2%) samples carried other pathogenic bacteria: Ehrlichia ruminantium (n = 9; 3.1%) in A. cohaerens, Ehrlichia sp. (n = 3; 1%) in Rh. pulchellus and A. cohaerens, Anaplasma sp. (n = 1; 0.5%) in A. cohaerens, and Neoehrlichia mikurensis (n = 2; 0.7%) in A. cohaerens. All ticks were negative for Bartonella spp., Babesia spp., Theileria spp., and Hepatozoon spp. We reported for the first time E. ruminatium, N. mikurensis, Ehrlichia sp., and Anaplasma sp. in A. cohaerens. Medically and veterinarily important pathogens were mostly detected from A. variegatum and A. cohaerens. These data are relevant for a One-health approach for monitoring and prevention of tick-borne disease transmission

    A network of magnetometers for multi-scale urban science and informatics

    Get PDF
    The magnetic signature of an urban environment is investigated using a geographically distributed network of fluxgate magnetometers deployed in and around Berkeley, California. The system hardware and software are described and initial operations of the network are reported. The sensors measure vector magnetic fields at a 3960&thinsp;Hz sample rate and are sensitive to 0.1&thinsp;nT/Hz. Data from individual stations are synchronized to ±120&thinsp;”s using global positioning system (GPS) and computer system clocks and automatically uploaded to a central server. We present the initial observations of the network and preliminary efforts to correlate sensors. A wavelet analysis is used to study observations of the urban magnetic field over a wide range of temporal scales. The Bay Area Rapid Transit (BART) is identified as the dominant signal in our observations, exhibiting aspects of both broadband noise and coherent periodic features. Significant differences are observed in both day–night and weekend–weekday signatures. A superposed epoch analysis is used to study and extract the BART signal.</p

    Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy

    Get PDF
    The photodynamics of bacteriorhodopsin were studied by transient absorption and gain measurements after excitation with femtosecond pulses at 620 nm. With probing pulses at longer wavelengths (λ > 770 nm) the previously reported formation of the J intermediate (with a time constant of 500±100 fs) was confirmed. With probing pulses around 700 nm, a faster process with a relaxation time of 200±70 fs was observed. The data analysis strongly suggests that this kinetic constant describes the reactive motion of the polyatomic molecule on its excited-state potential energy surface, i.e. one observes directly the incipient isomerization of the retinal molecule. The minimum of the S1 potential energy surface reached in 200 fs lies approximately 13300 cm−1 above the ground state of bacteriorhodopsin and from this minimum the intermediate J is formed with a time constant of 500 fs

    The Fermi Bubble as a Source of Cosmic Rays in the Energy Range > 10E15 eV

    Get PDF
    The {\it Fermi} Large Area Telescope has recently discovered two giant gamma-ray bubbles which extend north and south of the Galactic center with diameters and heights of the order of H∌10H\sim 10 kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A∗^*, with a capture rate of τcap−1∌3×10−5\tau_{\rm cap}^{-1}\sim 3\times 10^{-5} yr−1^{-1} and an energy release of W∌3×1052W\sim 3\times 10^{52} erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of u∌108u\sim 10^8 cm s−1^{-1}. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than E>1015E> 10^{15} eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the ``knee'' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble DB∌3×1030D_B\sim 3\times 10^{30} cm2^2 s−1^{-1}, we can reproduce the spectral index of the spectrum beyond the knee and within. The conversion efficiency from shock energy of the bubble into CR energy is about 10\%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.Comment: 43 pages, 8 figues, to be published in the Astrophysical Journal; version 2, 45 pages, 8 figures, added references and corrected typo

    Evaluation of volumetric modulated arc therapy (VMAT) with Oncentra MasterPlanÂź for the treatment of head and neck cancer

    Get PDF
    Background Several comparison studies have shown the capability of VMAT to achieve similar or better plan quality as IMRT, while reducing the treatment time. The experience of VMAT in a multi vendor environment is limited. We compared the plan quality and performance of VMAT to IMRT and we investigate the effects of varying various user-selectable parameters. Methods IMRT, single arc VMAT and dual arc VMAT were compared for four different head-and-neck tumors. For VMAT, the effect of varying gantry angle spacing and treatment time on the plan quality was investigated. A comparison of monitor units and treatment time was performed. Results IMRT and dual arc VMAT achieved a similar plan quality, while single arc could not provide an acceptable plan quality. Increasing the number of control points does not improve the plan quality. Dual arc VMAT delivery time is about 30% of IMRT delivery time. Conclusions Dual arc VMAT is a fast and accurate technique for the treatment of head and neck cancer. It applies similar number of MUs as IMRT, but the treatment time is strongly reduced, maintaining similar or better dose conformity to the PTV and OAR sparing

    Dark Matter Structures in the Universe: Prospects for Optical Astronomy in the Next Decade

    Full text link
    The Cold Dark Matter theory of gravitationally-driven hierarchical structure formation has earned its status as a paradigm by explaining the distribution of matter over large spans of cosmic distance and time. However, its central tenet, that most of the matter in the universe is dark and exotic, is still unproven; the dark matter hypothesis is sufficiently audacious as to continue to warrant a diverse battery of tests. While local searches for dark matter particles or their annihilation signals could prove the existence of the substance itself, studies of cosmological dark matter in situ are vital to fully understand its role in structure formation and evolution. We argue that gravitational lensing provides the cleanest and farthest-reaching probe of dark matter in the universe, which can be combined with other observational techniques to answer the most challenging and exciting questions that will drive the subject in the next decade: What is the distribution of mass on sub-galactic scales? How do galaxy disks form and bulges grow in dark matter halos? How accurate are CDM predictions of halo structure? Can we distinguish between a need for a new substance (dark matter) and a need for new physics (departures from General Relativity)? What is the dark matter made of anyway? We propose that the central tool in this program should be a wide-field optical imaging survey, whose true value is realized with support in the form of high-resolution, cadenced optical/infra-red imaging, and massive-throughput optical spectroscopy.Comment: White paper submitted to the 2010 Astronomy & Astrophysics Decadal Surve
    • 

    corecore