494 research outputs found

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech

    Dynamic Monte Carlo Simulations of Anisotropic Colloids

    Full text link
    We put forward a simple procedure for extracting dynamical information from Monte Carlo simulations, by appropriate matching of the short-time diffusion tensor with its infinite-dilution limit counterpart, which is supposed to be known. This approach --discarding hydrodynamics interactions-- first allows us to improve the efficiency of previous Dynamic Monte Carlo algorithms for spherical Brownian particles. In a second step, we address the case of anisotropic colloids with orientational degrees of freedom. As an illustration, we present a detailed study of the dynamics of thin platelets, with emphasis on long-time diffusion and orientational correlations.Comment: 12 pages, 9 figure

    Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear Driven Suspension

    Full text link
    We study response and velocity autocorrelation functions for a tagged particle in a shear driven suspension governed by underdamped stochastic dynamics. We follow the idea of an effective confinement in dense suspensions and exploit a time-scale separation between particle reorganization and vibrational motion. This allows us to approximately derive the fluctuation-dissipation theorem in a "hybrid" form involving the kinetic temperature as an effective temperature and an additive correction term. We show numerically that even in a moderately dense suspension the latter is negligible. We discuss similarities and differences with a simple toy model, a single trapped particle in shear flow

    Colloids dragged through a polymer solution: experiment, theory and simulation

    Get PDF
    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table

    Chiral separation in microflows

    Get PDF
    Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctuating motion of the molecules must be taken into account. These fluctuations play a decisive role in the proposed separation mechanism

    On the interplay between sedimentation and phase separation phenomena in two-dimensional colloidal fluids

    Get PDF
    Colloidal particles that are confined to an interface effectively form a two-dimensional fluid. We examine the dynamics of such colloids when they are subject to a constant external force, which drives them in a particular direction over the surface. Such a situation occurs, for example, for colloidal particles that have settled to the bottom of their container, when the container is tilted at an angle, so that they `sediment' to the lower edge of the surface. We focus in particular on the case when there are attractive forces between the colloids which causes them to phase separate into regions of high density and low density and we study the influence of this phase separation on the sedimentation process. We model the colloids as Brownian particles and use both Brownian dynamics computer simulations and dynamical density functional theory (DDFT) to obtain the time evolution of the ensemble average one-body density profiles of the colloids. We consider situations where the external potential varies only in one direction so that the ensemble average density profiles vary only in this direction. We solve the DDFT in one-dimension, by assuming that the density profile only varies in one direction. However, we also solve the DDFT in two-dimensions, allowing the fluid density profile to vary in both the xx- and yy-directions. We find that in certain situations the two-dimensional DDFT is clearly superior to its one-dimensional counterpart when compared with the simulations and we discuss this issue.Comment: 17 pages, 10 figures, submitted to Molecular Physic

    A dynamic density functional theory for particles in a flowing solvent

    Full text link
    We present a dynamic density functional theory (dDFT) which takes into accou nt the advection of the particles by a flowing solvent. For potential flows we can use the same closure as in the absence of solvent flow. The structure of the resulting advected dDFT suggests that it could be used for non-potential flows as well. We apply this dDFT to Brownian particles (e.g., polymer coils) in a solvent flowing around a spherical obstacle (e.g., a colloid) and compare the results with direct simulations of the underlying Brownian dynamics. Although numerical limitations do not allow for an accurate quantitative check of the advected dDFT both show the same qualitative features. In contrast to previous works which neglected the deformation of the flow by the obstacle, we find that the bow-wave in the density distribution of particles in front of the obstacle as well as the wake behind it are reduced dramatically. As a consequence the friction force exerted by the (polymer) particles on the colloid can be reduced drastically.Comment: 7 pages, 5 figures, 2 tables, submitte

    Successful Treatment of Early Endometrial Carcinoma by Local Delivery of Levonorgestrel: A Case Report

    Get PDF
    We describe a case of a 67-year-old Caucasian woman with an early, moderately-differentiated adenocarcinoma of the endometrium. A levonorgestrel-releasing intrauterine system was inserted, which she tolerated well. A full D&C, following removal of the device, was performed after 9 months, confirming absence of tumoral tissue. Examination after 24 months showed a very thin endometrium, indicating complete remission

    Reentrance effect in the lane formation of driven colloids

    Full text link
    Recently it has been shown that a strongly interacting colloidal mixture consisting of oppositely driven particles, undergoes a nonequilibrium transition towards lane formation provided the driving strength exceeds a threshold value. We predict here a reentrance effect in lane formation: for fixed high driving force and increasing particle densities, there is first a transition towards lane formation which is followed by another transition back to a state with no lanes. Our result is obtained both by Brownian dynamics computer simulations and by a phenomenological dynamical density functional theory.Comment: 4 pages, 2 figure

    Dense colloidal suspensions under time-dependent shear

    Full text link
    We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity) we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear-stress as an example we derive exactly a generalized Green-Kubo relation, and an equation of motion for the transient density correlator, involving a three-time memory function. Mode coupling approximations give a closed constitutive equation yielding the time-dependent stress for arbitrary shear rate history. We solve this equation numerically for the special case of a hard sphere glass subject to step-strain.Comment: 4 page
    • …
    corecore