We consider the nonlinear rheology of dense colloidal suspensions under a
time-dependent simple shear flow. Starting from the Smoluchowski equation for
interacting Brownian particles advected by shearing (ignoring fluctuations in
fluid velocity) we develop a formalism which enables the calculation of
time-dependent, far-from-equilibrium averages. Taking shear-stress as an
example we derive exactly a generalized Green-Kubo relation, and an equation of
motion for the transient density correlator, involving a three-time memory
function. Mode coupling approximations give a closed constitutive equation
yielding the time-dependent stress for arbitrary shear rate history. We solve
this equation numerically for the special case of a hard sphere glass subject
to step-strain.Comment: 4 page