We study response and velocity autocorrelation functions for a tagged
particle in a shear driven suspension governed by underdamped stochastic
dynamics. We follow the idea of an effective confinement in dense suspensions
and exploit a time-scale separation between particle reorganization and
vibrational motion. This allows us to approximately derive the
fluctuation-dissipation theorem in a "hybrid" form involving the kinetic
temperature as an effective temperature and an additive correction term. We
show numerically that even in a moderately dense suspension the latter is
negligible. We discuss similarities and differences with a simple toy model, a
single trapped particle in shear flow