49 research outputs found

    Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions

    Get PDF
    © 2015, Li et al. In this article, we study the existence of positive solutions for a class of singular nonlinear fractional differential equations with Riemann-Stieltjes integral boundary conditions. Using the properties of the Green function and the fixed point theory in cones, we obtain some results on the existence of positive solutions. Our results extend and improve many known results including singular and nonsingular cases

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions

    Get PDF
    © 2018, The Author(s). This paper is concerned with the uniqueness of positive solutions for a class of singular fractional differential equations with integral boundary conditions. The nonlinear term and boundary conditions of fractional differential equation contain the fractional order derivatives. The uniqueness of positive solutions is derived by the fixed point theorem of mixed monotone operator. An example is given to demonstrate the validity of our main results

    Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions

    Get PDF
    In this article, we study the existence of iterative positive solutions for a class of singular nonlinear fractional differential equations with Riemann-Stieltjes integral boundary conditions, where the nonlinear term may be singular both for time and space variables. By using the properties of the Green function and the fixed point theorem of mixed monotone operators in cones we obtain some results on the existence and uniqueness of positive solutions. We also construct successively some sequences for approximating the unique solution. Our results include the multipoint boundary problems and integral boundary problems as special cases, and we also extend and improve many known results including singular and non-singular cases
    corecore