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Abstract
This paper is concerned with weighted fractional differential equations with infinite
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1 Introduction
Recently, fractional differential equations have attracted a considerable interest in both
mathematics and applications, since they have been proved to be valuable tools in mod-
eling many physical phenomena. There has been a significant development in fractional
differential equations in the past decades [–]. Among these works, some authors stud-
ied functional fractional differential equations [–, ]. For example, in [], Benchohra et
al. studied the fractional order differential equations

Dαy(t) = f (t, yt), t ∈ [,b],  < α <  (.)

with infinite delay

y(t) = φ(t), t ∈ (–∞, ], (.)

where Dα is the standard Riemann-Liouville fractional derivative, φ ∈ B, the phase space
defined axiomatically by Hale and Kato, and yt(θ ) = y(t + θ ) for θ < . Some existence
results are obtained in the special case y() = . Henderson and Ouahab also studied the
multivalued version of (.) (i.e., fractional differential inclusion) with finite delay in [].
Zhang [] discussed the linear fractional order time-delay system

Dαx(t) = Ax(t) +Ax(t – r) + f (t), t ≥ , < α < , (.)

x(t) = φ(t), t ∈ [–r, ] (.)
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in a finite dimensional space Rn and got some existence and stability results. In [], Laksh-
mikantham concerned some basic theory for functional fractional differential equations.
However, it is known that the Riemann-Liouville fractional derivative of a function y is

unbounded at some neighborhoods of the initial point , except that y() = . For this rea-
son, when y() �= , the solutions to the functional fractional differential equations given
in the mentioned papers may not be well defined.
We investigate some examples. Firstly, we consider fractional differential equations with

infinite delay. LetC = {φ ∈ C((–∞, ];R) : φ is bounded on (–∞, ], and limθ→–∞ φ(θ ) =
}. Then C satisfies axioms (A), (A) and (B) (specified later, also see []), with H = 
and K (t) =M(t) =  for t ≥  []. Let φ(θ ) = eθ for θ ∈ (–∞, ] in (.). Obviously, φ ∈ C.
We take α = 

 and f (t, yt) = y(t – b). Then equations (.)-(.) become

D/y(t) = y(t – b), t ∈ (,b], (.)

y(t) = et , t ∈ (–∞, ]. (.)

Then we get that y(t – b) = et–b for t ∈ (,b]. Since IαDαy(t) = y(t) + Ctα– for some con-
stant C, we can apply the fractional integral operator I 

 to both sides of (.). A direct
computation gives

y(t) = I/
(
et–b

)
+Ct–/

= e–b · I/
( ∞∑

k=

tk

k!

)
+Ct–/

= e–b ·
∞∑
k=

�(k + )tk+/

k!�(k +  + /)
+Ct–/

= e–b · t/
∞∑
k=

tk

�(k + /)
+Ct–/

for t ∈ [,b] and some constant C, which is unbounded at any right neighborhood of .
Consequently, equations (.)-(.) cannot have any continuous solution on (–∞,b].
Similarly, for the case of finite delay, we consider the following fractional differential

equation on R with finite delay:

D/y(t) = y(t – r), t ∈ (,b], (.)

y(t) = , t ∈ [–r, ]. (.)

Then y(t – r) =  for t ∈ (, r], and equation (.) reduces to D/y(t) =  for t ∈ (, r]. Ap-
plying the fractional integral operator I/ to both sides, we get that

y(t) =



√

π
t/ +Ct–/

for t ∈ [, r], which is still unbounded in the right neighborhood of .
From the above examples we can see that, in the case of nonzero initial value, functional

fractional differential equations with Riemann-Liouville derivative and either finite or in-
finite delay may not have ‘classical’ solutions. Moreover, the functions yt that appeared in
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these equations, defined by yt(θ ) = y(t + θ ) for θ ≤ , may not be well defined, or not in
the phase space. On the other hand, the Riemann-Liouville fractional derivative of the
constant function is not zero. In fact, if h(t) = C �=  for t ∈ [a,b] and  < α < , then
Dα

ah(t) = C (t–a)–α

�(–α) �= . Hence the nonzero initial value problems cannot be transformed
to zero initial value problem by the parallel shift method.
Motivated by the above comment, and inspired by [] and [], in this paper, we consider

the weighted functional fractional differential equation with infinite delay of the form

Dαy(t) = f (t, ỹt), t ∈ (,b], (.)

ỹ = φ ∈ B, (.)

where  < α ≤ , Dα is the Riemann-Liouville fractional derivative, ỹ(t) = t–αy(t), f :
(,b]× B → R is a given function satisfying some assumptions, and B is the phase space
that will be specified later. We give the definition of solutions and investigate the exis-
tence and continuous dependence of solutions to such equations in the space C–α((a,b]).
An example is presented to illustrate the results.

2 Preliminaries and lemmas
In this sectionwe collect some definitions and results needed in our further investigations.
Let us denote by C((a,b]) the space of all continuous real functions defined on (a,b]

and by Lloc(a,b) the space of all real functions defined on (a,b) which are locally Lebesgue
integrable. We also consider the space Cr((a,b]) consisting of all continuous functions
f : (a,b]→ R such that limt→a(t–a)rf (t) exists, with the norm ‖f ‖Cr = sup{|(t–a)rf (t)|; t ∈
(a,b]}.

Definition . [] Let α >  be a fixed number. The Riemann-Liouville fractional integral
of order α >  of the function h : [a,b]→ R is defined by

Iαa h(t) =


�(α)

∫ t

a
(t – s)α–h(s)ds, t ∈ [a,b]

provided the right-hand side is pointwisely defined, where �(·) denotes the well-known
gamma function, i.e., �(z) =

∫ ∞
 e–ttz– dt.

Definition . [] Let α >  be fixed and n = [α] + . The Riemann-Liouville fractional
derivative of order α of h : (a,b]→ R at the point t is defined by

Dα
ah(t) =


�(n – α)

dn

dtn

∫ t

a
(t – s)n–α–h(s)ds, t ∈ [a,b]

provided the right-hand side is pointwisely defined, where [α] denotes the integer part of
the real number α.

When  < α < , then

Dα
ah(t) =


�( – α)

d
dt

∫ t

a
(t – s)α–h(s)ds.

For simplicity, when a = , we denote Dα
 and Iα by Dα and Iα , respectively.
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Lemma . [] Let  < α < . Then the unique solutions to the equation Dαh(t) =  are
given by the formula

h(t) = Ctα–,

for t > , where C ∈ R is a constant, provided h ∈ C((,b]) ∩ Lloc(,b). Further, if f ∈
C((,b])∩ Lloc(a,b) such that Dαf ∈ C((,b])∩ Lloc(,b), then

IαDαf (t) = f (t) +Ctα–

for t >  and some constant C ∈ R.

In the literature devoted to equations with infinite delay, the selection of the state space
B plays an important role in the study of both qualitative and quantitative theory. A usual
choice is a semi-normed space satisfying suitable axioms, which was introduced by Hale
and Kato []. For a detailed discussion on the topic, we refer to the book by Hino et al.
[].

Definition . [] A linear topological space of functions from (–∞, ] into X, with
seminorm ‖ · ‖B , is called an admissible phase space if B has the following properties.
(A) There exist a positive constant H and functions K (·),M(·) : [, +∞)→ [, +∞),

with K continuous andM locally bounded, such that for any a,b ∈ R and b > a, if
x : (–∞,b]→ X , xa ∈ B, and x(·) is continuous on [a,b], then for every t ∈ [a,b],
the following conditions hold:
(i) xt ∈ B;
(ii) ‖x(t)‖ ≤ H‖xt‖B for some H > ;
(iii) ‖xt‖B ≤ K (t – a) supa≤s≤t ‖x(s)‖ +M(t – a)‖xa‖B .

(A) For the function x(·) in (A), t �→ xt is a B-valued continuous function for t ∈ [a,b].
(B) The space B is complete.

3 Existence results
We begin with the definition of solutions to the weighted functional fractional differential
equations.

Definition . A function y : (–∞,b]→ R is said to be a solution to (.)-(.), if y|(,b] ∈
C((,b])∩ Lloc(,b), ỹ = φ and satisfies (.).

Example . Consider the weighted version of the previous example

D/y(t) = ỹ(t – b), t ∈ (,b], (.)

ỹ(t) = et , t ∈ (–∞, ]. (.)

By computation we also get that for t ∈ (,b],

y(t) = e–b · t/
∞∑
k=

tk

�(k + /)
+Ct–/ = e–b · t/E,/(t) +Ct–/.
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Then ỹ(t) = e–b · tE,/(t) +C. Since ỹ() = , we get that C = . Therefore, the solution to
(.)-(.) is

y(t) =

{
e–b · t/E,/(t) + t–/, t ∈ (,b],
et , t ∈ (–∞, ],

where Eα,β (·) is the Mittag-Leffler function, i.e., Eα,β(t) =
∑∞

k=
tk

�(αk+β) . Note that

ỹ(t) = t/y(t) =

{
e–b · tE,/(t) + , t ∈ (,b],
et , t ∈ (–∞, ]

is continuous on (–∞,b], and therefore, ỹt is well defined for t ∈ [,b].
For the existence results on problem (.)-(.), we need to transform the fractional

differential equation into an integral equation. From Lemma . we can obtain that if  <
α <  and h ∈ C((,b]) ∩ Lloc(,b), then the function y solves the fractional differential
equation

Dαy(t) = h(t), t ∈ (,b]

if and only if y satisfies

y(t) =


�(α)

∫ t


(t – s)α–h(s)ds +Ctα–, t ∈ (,b]

for some constant C [].
We first give an existence result based on the Banach contraction principle. We list the

hypotheses.

(H) f : (,b]×B → R is continuous.
(H) There exists a constant L >  such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ L‖u – v‖B

for t ∈ (,b] and every u, v ∈ B.

Theorem. Assume that (H) and (H) hold.Then there exists a unique solution to (.)-
(.) on (–∞,b].

Proof By Lemma . and the above remark, a function y is a solution to (.)-(.) if and
only if y satisfies

y(t) =

{


�(α)
∫ t
 (t – s)α–f (s, ỹs)ds + φ()tα–, t ∈ (,b],

φ(t), t ∈ (–∞, ].

For given φ : (–∞, ] which belongs to B, let φ̃ be a function defined by

φ̃(t) =

{
, t ∈ (,b],
φ(t), t ∈ (–∞, ].

http://www.advancesindifferenceequations.com/content/2014/1/190
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Then we have φ̃ = φ. For z ∈ C–α((,b];R), where C–α((,b];R) is the Banach space con-
sisting of all continuous functions f : (,b] → R such that limt→ t–αf (t) exists, endowed
with the norm ‖f ‖C–α

= sup{|t–αf (t)|; t ∈ (,b]}, we extend z̃ to (–∞,b], also denoted by z̃,
defined by

z̃(t) =

{
t–αz(t), t ∈ (,b],
, t ∈ (–∞, ].

It is easily seen that if y(·) satisfies the integral equation

y(t) =


�(α)

∫ t


(t – s)α–f (s, ỹs)ds + φ()tα–, t > ,

we can decompose y(·) as y(t) = φ(t) + z(t), which implies that ỹt = φ̃t + z̃t for t ∈ (,b], and
the function z(·) satisfies

z(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–, t > . (.)

Set W = {z : (–∞,b] → R; z|(,b] ∈ C–α((,b];R), z = }. For z ∈ W , define ‖z‖W =
‖z‖B + ‖z‖C–α

= ‖z‖C–α
, then (W ,‖z‖W ) becomes a Banach space. Define an operator

P :W →W by

(Pz)(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–, t > .

We can see that if z ∈W is a fixed point of P, then y = z + φ̃ is a solution of (.)-(.).
Let Kb = sup{K (t); t ∈ [,b]}, where K (·) is the function that appeared in Definition ..

Let N = [b(LKbb–α/�( + α))/α], and hi = ib/N . Then  = h < h < · · · < hN = b and

LKbb–α(hi+ – hi)α

�( + α)
<



(.)

for i = , , . . . ,N .
We first focus on the interval (,h]. LetW = {z : (–∞,h]→ R; z|(,h] ∈ C–α((,h];R),

z| = } and define ‖z‖W = ‖z‖B + sup{|t–αz(t)|;  < t ≤ h} = sup{|t–αz(t)|;  < t ≤ h}
for z ∈W. Then (W,‖z‖W) is a Banach space. Define the operator P :W →W by

(Pz)(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–, t ∈ (,h].

For z, z∗ ∈W and t ∈ (,h], we have

∣∣t–α(Pz)(t) – t–α
(
Pz∗)(t)∣∣

≤ t–α

�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s) – f
(
s, φ̃s + z̃∗

s
)∣∣ds

≤ Lt–α

�(α)

∫ t


(t – s)α–

∥∥z̃s – z̃∗
s
∥∥
B ds.

http://www.advancesindifferenceequations.com/content/2014/1/190
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Since

∥∥z̃s – z̃∗
s
∥∥
B

≤ K (s) sup
≤τ≤s

{∣∣z̃(τ ) – z̃∗(τ )
∣∣} +M(s)

∥∥z̃ – z̃∗

∥∥
B

≤ Kb sup
≤τ≤s

{∣∣τ –αz(τ ) – τ –αz∗(τ )
∣∣}

≤ Kb
∥∥z – z∗∥∥

W,

we have

∣∣t–α(Pz)(t) – t–α
(
Pz∗)(t)∣∣

≤ LKbt–α

�(α)

∫ t


(t – s)α– ds

∥∥z – z∗∥∥
W

≤ LKbb–αhα


�( + α)
∥∥z – z∗∥∥

W,

and hence

∥∥Pz – Pz∗∥∥
W ≤ LKbb–αhα


�( + α)

∥∥z – z∗∥∥
W.

From (.) and the Banach contraction principle we know that there exists a unique z ∈W

satisfying

z(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–

for t ∈ (,h], which is the unique solution to the integral equation (.) on the interval
(,h].
Nextwe consider the interval [h,h]. Restrict the functions z ∈ W on the interval [h,h]

to constructW and define ‖z‖W = ‖z‖B +sup{|t–αz(t)|;h < t ≤ h} = sup{|t–αz(t)|;h <
t ≤ h} for z ∈ W. Then (W,‖z‖W) is a Banach space. For t ∈ [h,h], rewrite equation
(.) as

z(t) =


�(α)

∫ t

h
(t – s)α–f (s, φ̃s + z̃s)ds

+


�(α)

∫ h


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–.

Since the function z is uniquely defined on (,h], the second integral can be considered
as a known function. Using the same arguments as above, we can obtain that there exists
a unique function z ∈ W satisfying

z(t) =


�(α)

∫ t

h
(t – s)α–f (s, φ̃s + z̃s)ds

+


�(α)

∫ h


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–

http://www.advancesindifferenceequations.com/content/2014/1/190
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for t ∈ [h,h], which is the unique solution to the integral equation (.) on the interval
[h,h]. Taking the next interval [h,h], repeating this process, we conclude that there
exists a unique solution to the integral equation (.) on the interval (,hN ] = (,b]. Set
y = z + φ̃, then y is the unique solution to the fractional differential equation (.)-(.).
Below we consider the existence result which is based on the Schauder fixed point the-

orem. We need the following hypothesis.

(H) There exist an η ∈ Lp(,b) with p > /α and a continuously non-decreasing function

 : [, +∞)→ [, +∞) such that

∣∣f (t,u)∣∣ ≤ η(t)

(‖u‖B

)
for t ∈ (,b] and every u ∈ B.

�

Theorem . Assume that hypotheses (H) and (H) hold. If

lim sup
r→+∞


(r)
r

<
�( + α)
Kbb‖η‖p , (.)

then there exists at least a solution to (.)-(.) on (–∞,b].

Proof As in the proof of Theorem ., we define the operator P :W →W . The continuity
of P can be derived by hypothesis (H) and the Lebesgue dominated convergence theorem.
We will verify that P is completely continuous.
We first show that P maps bounded subsets in W into bounded subsets. Let Br = {z ∈

W ;‖z‖W ≤ r}. Then, for any z ∈ Br and t ∈ (,b], we have

∣∣t–α(Pz)(t)
∣∣ ≤ t–α

�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s)
∣∣ds + ∣∣φ()∣∣

≤ b–α

�(α)

∫ t


(t – s)α–η(s)


(‖φ̃s + z̃s‖B
)
ds +

∣∣φ()∣∣.
Since

‖z̃s – φ̃s‖B ≤ K (s) sup
≤τ≤s

∣∣z̃(τ )∣∣ +M(s)‖z̃‖B +K (s) sup
≤τ≤s

∣∣φ̃(τ )∣∣ +M(s)‖φ̃‖B

≤ Kbr +Mb‖φ‖B , (.)

whereMb = sup≤s≤bM(s), it follows from (H) and Holder’s inequality that

∣∣t–α(Pz)(t)
∣∣ ≤ b–α

�(α)

∫ t


(t – s)α–η(s)ds


(
Kbr +Mb‖φ‖B

)
+

∣∣φ()∣∣
≤ b–α

�(α)



(
Kbr +Mb‖φ‖B

)(∫ t


(t – s)(α–)q ds

)/q

‖η‖p +
∣∣φ()∣∣

≤ 

(
Kbr +Mb‖φ‖B

) b‖η‖p
�( + α)

+
∣∣φ()∣∣ := l,

where ‖η‖p =
∫ b
 |η(s)|ds and q > with /p+/q = . Therefore, ‖Pz‖W ≤ l for every z ∈ Br ,

which implies that P maps bounded subsets into bounded subsets in W .

http://www.advancesindifferenceequations.com/content/2014/1/190
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Next, we prove that P maps bounded subsets into equicontinuous subsets in W . Let
z ∈ Br and t, t ∈ (,b] with t < t, we have

∣∣t–α
 (Pz)(t) – t–α

 (Pz)(t)
∣∣

≤ t–α
 – t–α


�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s)
∣∣ds

+
t–α


�(α)

[∫ t



∣∣(t – s)α– – (t – s)α–
∣∣∣∣f (s, φ̃s + z̃s)

∣∣ds
+

∫ t

t

(
t – s

)α–∣∣f (s, φ̃s + z̃s)
∣∣ds]

≤ t–α
 – t–α


�(α)

∫ t


(t – s)α–η(s)


(‖φ̃s + z̃s‖B
)
ds

+
t–α


�(α)

[∫ t



(
(t – s)α– – (t – s)α–

)
η(s)


(‖φ̃s + z̃s‖B
)
ds

+
∫ t

t

(
t – s

)α–
η(s)


(‖φ̃s + z̃s‖B
)
ds

]

≤ (t–α
 – t–α

 )
(r)
�(α)

(∫ t


(t – s)(α–)q ds

)/q(∫ t


ηp(s)ds

)/p

+
t–α
 
(r)
�(α)

[(∫ t



(
(t – s)α– – (t – s)α–

)q ds)/q(∫ t


ηp(s)ds

)/p

+
(∫ t

t

(
t – s

)(α–)q ds)/q(∫ t


ηp(s)ds

)/p]

≤ ‖η‖p
(r)
r�(α)

(
br

(
t–α
 – t–α


)
+ b–α

(
(t – t)r +

(
tr – tr

)))
,

where r = Kbr + Mb‖φ‖B , r = ((α – )q + )/q and r = [(α – )q + ]/q > . It follows
that |t–α

 (Pz)(t) – t–α
 (Pz)(t)| →  as t – t → , and the convergence is independent of

z ∈ Br , which implies that the set PBr is equicontinuous.
Now we have proved that P maps bounded subsets into bounded and equicontinuous

subsets inW . By theArzelá-Ascoli theorem,we conclude thatP is a completely continuous
operator.
To apply Schauder’s fixed point theorem, we need to verify that there exists a closed

convex bounded subset in B ⊂W such that PB ⊂ B. To this end, we derive from inequality
(.) that there exists a constant r̃ >  such that

Kbb‖η‖p
r�(α)



(
Kbr̃ +Mb‖φ‖B

)
+

∣∣φ()∣∣ < r̃.

Define B = {z ∈ W ;‖z‖W ≤ r̃}, then B is closed, convex and bounded inW . Then, for every
z ∈ B and t ∈ (,b], we have

∣∣t–α(Pz)(t)
∣∣ ≤ t–α

�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s)
∣∣ds + ∣∣φ()∣∣

≤ b–α

�(α)

∫ t


(t – s)α–η(s)


(‖φ̃s + z̃s‖B
)
ds +

∣∣φ()∣∣

http://www.advancesindifferenceequations.com/content/2014/1/190
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≤ b–α

�(α)

(∫ t


(t – s)(α–)q ds

)/q

‖η‖p

(
Kbr̃ +Mb‖φ‖B

)
+

∣∣φ()∣∣
≤ Kbb‖η‖p

r�(α)



(
Kbr̃ +Mb‖φ‖B

)
+

∣∣φ()∣∣
≤ r̃.

It follows that ‖Pz‖W ≤ r̃ for all z ∈ B, and hence PB ⊂ B.
An application of Schauder’s fixed point theorem shows that there exists at least a fixed

point z of P inW . Then y = z+ φ̃ is the solution to (.)-(.), and the proof is completed.
�

4 Dependence on initial data
In this section, we investigate the influence of a perturbation of initial data to the solu-
tions. We first look at the dependence of solutions on initial values. For this purpose, we
denote by y(φ, ·) the solution to equation (.) with initial condition (.), and by y(ψ , ·)
the solution to (.) with the initial condition

ỹ =ψ ∈ B. (.)

We will prove that the solution mapping is Lipschitz continuous.

Theorem . Let the assumptions of Theorem . hold. If LKbb/�( + α) < , then there
exists a constant L̃ such that

∥∥y(φ, ·) – y(ψ , ·)∥∥C–α
≤ L̃‖φ –ψ‖B

for every φ,ψ ∈ B.

Proof From Theorem . we know that for every φ,ψ ∈ B, equation (.) has solutions
y(φ, ·) and y(ψ , ·) on (–∞,b], respectively. Further, there are z, z ∈ C–α((,b]) such that
y(φ, ·) = z + φ̃ and y(ψ , ·) = z + ψ̃ , satisfying

z(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–, t ∈ (,b],

z(t) =


�(α)

∫ t


(t – s)α–f (s, ψ̃s + z̃s)ds +ψ()tα–, t ∈ (,b],

and y(φ, t) = z(t), y(ψ , t) = z(t) for t ∈ (,b]. Then, by (H) and axiom (A) (in Defini-
tion .), for t ∈ (,b] we have

∣∣t–αy(φ, t) – t–αy(ψ , t)
∣∣

=
∣∣t–αz(t) – t–αz(t)

∣∣
≤ t–α

�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s) – f (s, ψ̃s + z̃s)
∣∣ds + ∣∣φ() –ψ()

∣∣
≤ Lt–α

�(α)

∫ t


(t – s)α–

(‖ z̃s – z̃s ‖B + ‖φ̃s – ψ̃s‖B
)
ds +

∣∣φ() –ψ()
∣∣

http://www.advancesindifferenceequations.com/content/2014/1/190
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≤ Lt–α

�(α)

[∫ t


(t – s)α–K (s) sup

≤τ≤s

∣∣z̃(τ ) – z̃(τ )
∣∣ds

+
∫ t


(t – s)α–M(s)‖φ̃ – ψ̃‖B ds

]
+H‖φ –ψ‖B

≤ Lt–α

�(α)

[∫ t


(t – s)α– dsKb‖z – z‖C–α

+
∫ t


(t – s)α– dsMb‖φ –ψ‖B

]
+H‖φ –ψ‖B

≤ LKbb
�( + α)

‖z – z‖C–α
+

(
LMbb

�( + α)
+H

)
‖φ –ψ‖B ,

and hence

∥∥y(φ, ·) – y(ψ , ·)∥∥C–α

≤ LKbb
�( + α)

‖z – z‖C–α
+

(
LMbb

�( + α)
+H

)
‖φ –ψ‖B

=
LKbb

�( + α)
∥∥y(φ, ·) – y(ψ , ·)∥∥C–α

+
(

LMbb
�( + α)

+H
)

‖φ –ψ‖B.

Since LKbb/�( + α) < , let L̃ = (LMbb +H�( + α))/(�( + α) – LKbb). Then we obtain

∥∥y(φ, ·) – y(ψ , ·)∥∥C–α
≤ L̃‖φ –ψ‖B

as desired, which completes the proof. �

Next we investigate the influence of changes in the given function on the right-hand
side of the differential equation. Now we denote by y(f , ·) the solution to the differential
equation (.) with initial condition (.) and by y(f̃ , ·) the solution to the differential
equation

Dα
y(t) = f̃ (t, ỹt), t ∈ (,b] (.)

with initial condition (.).

Theorem . Let f and f̃ fulfill hypotheses (H) and (H). If LKbb/�( + α) < , then there
exists a constant K̃ such that

∥∥y(f , ·) – y(f̃ , ·)∥∥C–α
≤ K̃ sup

(t,v)∈(,b]×B

∣∣f (t, v) – f̃ (t, v)
∣∣.

Proof The existence of solutions can be ensured by Theorem .. Let z, z ∈ C–α((,b])
be such that y(f , ·) = z + φ̃ and y(f̃ , ·) = z + φ̃. Then z and z satisfy

z(t) =


�(α)

∫ t


(t – s)α–f (s, φ̃s + z̃s)ds + φ()tα–, t ∈ (,b]

and

z(t) =


�(α)

∫ t


(t – s)α– f̃ (s, φ̃s + z̃s)ds + φ()tα–, t ∈ (,b].

http://www.advancesindifferenceequations.com/content/2014/1/190
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For t ∈ (,b], we have

∣∣t–αy(f , t) – t–αy(f̃ , t)
∣∣

=
∣∣t–αz(t) – t–αz(t)

∣∣
≤ t–α

�(α)

∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s) – f̃ (s, φ̃s + z̃s)
∣∣ds

≤ t–α

�(α)

[∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s) – f (s, φ̃s + z̃s)
∣∣ds

+
∫ t


(t – s)α–

∣∣f (s, φ̃s + z̃s) – f̃ (s, φ̃s + z̃s)
∣∣ds]

≤ LKbb
�( + α)

‖z – z‖C–α
+

Lb
�( + α)

sup
(t,v)∈(,b]×B

∣∣f (t, v) – f̃ (t, v)
∣∣.

Therefore,

∥∥y(f , ·) – y(f̃ , ·)∥∥C–α

≤ LKbb
�( + α)

‖z – z‖C–α
+

Lb
�( + α)

sup
(t,v)∈(,b]×B

∣∣f (t, v) – f̃ (t, v)
∣∣

=
LKbb

�( + α)
∥∥y(f , ·) – y(f̃ , ·)∥∥C–α

+
Lb

�( + α)
sup

(t,v)∈(,b]×B

∣∣f (t, v) – f̃ (t, v)
∣∣.

Take K̃ = Lb/(�( + α) – LKbb), we get the required result. �

5 An example
In this section we give an example to illustrate our main results. Let Bγ = {y ∈ C((–∞, ];
R); limθ→–∞ eγ θy(θ ) exist in R}, where γ >  is a constant. Then Bγ satisfies axioms (A),
(A) and (B) in Definition . with K (t) =M(t) =  andH =  []. For any φ ∈ Bγ , consider
the weighted fractional functional differential equation

Dαy(t) = λ
[
t–αy(t – b)

]β + g(t), t ∈ (,b], (.)

with infinite delay

y(t) = φ(t), t ∈ (–∞, ], (.)

where g ∈ C([, ]), λ ∈ R and β >  are constants. Let f (t,x) = λxβ + g(t). If β ≥ , then it is
easily seen that f satisfies the Lipschitz condition with respect to x on any bounded inter-
val. So, by Theorem ., problem (.)-(.) has a unique solution on (–∞,b]. If  < β < ,
then f does not satisfy the Lipschitz condition with respect to x in some neighborhoods
of . However, in this case, we can define η(t) = sup{g(t); t ∈ [, ]}, 
(r) =  for r ∈ [, ],
and 
(r) = rρ for r ≥  and constant ρ with β < ρ < . Then hypothesis (H) holds. Also,
since lim supr→∞ 
(r)/r = , condition (.) is satisfied. Hence, by Theorem ., problem
(.)-(.) has at least a solution on (–∞,b].
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Remark . In [], the authors studied the weighted fractional Cauchy problem

(
Dα

a+y
)
(t) = λ(t – a)β

[
y(t)

]m + b(t – a)ν ,

where α > , t > a and m >  with initial conditions

(
Dα–k

a+ y
)
(a+) = bk

(
bk ∈ R,k = , , . . . ,n;n = [α] + 

)
.

The nonlinear case (m �= ) is discussed in Example . on p., and the linear case (m = )
in Examples .-. on pp.-. For the homogeneous case, the explicit solutions are
constructed by using generalizedMittag-Leffler functions. However, in general, we cannot
expect to find explicit solutions for delayed fractional differential equations, even for linear
and homogeneous cases.
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