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Abstract
By using fixed point results on cones, we study the existence and uniqueness of
positive solutions for some nonlinear fractional differential equations via given
boundary value problems. Examples are presented in order to illustrate the obtained
results.

1 Introduction
The field of fractional differential equations has been subjected to an intensive devel-
opment of the theory and the applications (see, for example, [–] and the references
therein). It should be noted that most of papers and books on fractional calculus are de-
voted to the solvability of linear initial fractional differential equations on terms of special
functions. There are some papers dealing with the existence of solutions of nonlinear ini-
tial value problems of fractional differential equations by using the techniques of nonlinear
analysis such as fixed point results, the Leray-Schauder theorem, stability, etc. (see, for ex-
ample, [–] and the references therein). In fact, fractional differential equations arise
in many engineering and scientific disciplines such as physics, chemistry, biology, eco-
nomics, control theory, signal and image processing, biophysics, blood flow phenomena
and aerodynamics (see, for example, [–] and the references therein). The main ad-
vantage of using the fractional nonlinear differential equations is related to the fact that
we can describe the dynamics of complex non-local systems with memory. In this line of
taught, the equations involving various fractional orders are important from both theo-
retical and applied view points. We need the following notions.

Definition . ([, ]) For a continuous function f : [,∞)→R, the Caputo derivative of
fractional order α is defined by

cDαf (t) =


�(n – α)

∫ t


(t – s)n–α–f (n)(s)ds,

where n –  < α < n, n = [α] +  and [α] denotes the integer part of α.
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Definition . ([, ]) The Riemann-Liouville fractional derivative of order α for a con-
tinuous function f is defined by

Dαf (t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n–

ds
(
n = [α] + 

)
,

where the right-hand side is pointwise defined on (,∞).

Definition . ([, ]) Let [a,b] be an interval in R and α > . The Riemann-Liouville
fractional order integral of a function f ∈ L([a,b],R) is defined by

Iαa f (t) =


γ (α)

∫ t

a

f (s)
(t – s)–α

ds

whenever the integral exists.

Suppose that E is a Banach space which is partially ordered by a cone P ⊆ E, that is, x≤ y
if and only if y – x ∈ P. We denote the zero element of E by θ . A cone P is called normal if
there exists a constant N >  such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖ (see []). Also, we
define the order interval [x,x] = {x ∈ E|x ≤ x ≤ x} for all x,x ∈ E []. We say that an
operator A : E → E is increasing whenever x ≤ y implies Ax ≤ Ay. Also, x ∼ y means that
there exist λ >  and μ >  such that λx≤ y≤ μx (see []). Finally, put Ph = {x ∈ E|x∼ h}
for all h > θ . It is easy to see that Ph ⊆ P is convex and λPh = Ph for all λ > . We recall
the following in our results. Let E be a real Banach space and let P be a cone in E. Let
(a,b) be an interval and let τ and ϕ be two positive-valued functions such that ϕ(t)≥ τ (t)
for all t ∈ (a,b) and τ : (a,b) → (, ) is a surjection. We say that an operator A : P → P is
τ -ϕ-concave whenever A(τ (t)x) ≥ ϕ(t)Ax for all t ∈ (a,b) and x ∈ P []. We say that A is
ϕ-concave whenever τ (t) = t for all t []. We recall the following result.

Theorem . ([]) Let E be a Banach space, let P be a normal cone in E, and let A : P → P
be an increasing and τ -ϕ-concave operator. Suppose that there exists θ 
= h ∈ P such that
Ah ∈ Ph. Then there are u, v ∈ Ph and r ∈ (, ) such that rv ≤ u ≤ v and u ≤ Au ≤
Av ≤ v, the operator A has a unique fixed point x∗ ∈ [u, v], and for x ∈ Ph and the
sequence {xn} with xn = Axn–, we have ‖xn – x∗‖ → .

2 Main results
We study the existence and uniqueness of a solution for the fractional differential equation

Dαu(t) + f
(
t,u(t)

)
= 

on partially ordered Banach spaces with two types of boundary conditions and two types
of fractional derivatives, Riemann-Liouville and Caputo.

2.1 Existence results for the fractional differential equation with the
Riemann-Liouville fractional derivative

First, we study the existence and uniqueness of a positive solution for the fractional differ-
ential equation

Dαu(t) + f
(
t,u(t)

)
= 

(
 < ε < T ,T ≥ , t ∈ [ε,T],  < α < 

)
, (.)
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u(η) = u(T)
(
η ∈ (ε, t)

)
, (.)

where Dα is the Riemann-Liouville fractional derivative of order α. Let E = C[ε,T]. Con-
sider the Banach space of continuous functions on [ε,T] with the sup norm and set
P = {y ∈ C[ε,T] :mint∈[ε,T] y(t) ≥ }. Then P is a normal cone.

Lemma . Let  < ε < T , T ≥ , t ∈ [ε,T], η ∈ (ε, t) and  < α < . Then the problem
Dαu(t) + f (t,u(t)) =  with the boundary value condition u(η) = u(T) has a solution u if
and only if u is a solution of the fractional integral equation

u(t) =
∫ T

ε

G(t, s)f
(
s,u(s)

)
ds,

where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tα–(η–s)α––tα–(T–s)α–
(ηα––Tα–)�(α) – (t–s)α–

�(α) , ε ≤ s ≤ η ≤ t ≤ T ,
–tα–(T–s)α–

(ηα––Tα–)�(α) –
(t–s)α–

�(α) , ε ≤ η ≤ s ≤ t ≤ T ,
–tα–(T–s)α–

(ηα––Tα–)�(α) , ε ≤ η ≤ t ≤ s ≤ T .

Proof From Dαu(t) + f (t,u(t)) =  and the boundary condition, it is easy to see that u(t) –
ctα– = –Iαε f (t,u(t)). By the definition of a fractional integral, we get

u(t) = ctα– –
∫ t

ε

(t – s)α–

�(α)
f
(
s,u(s)

)
ds.

Thus, u(η) = cηα– –
∫ η

ε

(η–s)α–
�(α) f (s,u(s))ds and

u(T) = cTα– –
∫ T

ε

(T – s)α–

�(α)
f
(
s,u(s)

)
ds.

Since u(η) = u(T), we obtain

c =


ηα– – Tα–

∫ η

ε

(η – s)α–

�(α)
f
(
s,u(s)

)
ds –


ηα– – Tα–

∫ T

ε

(T – s)α–

�(α)
f
(
s,u(s)

)
ds.

Hence,

u(t) =
tα–

ηα– – Tα–

∫ η

ε

(η – s)α–

�(α)
f
(
s,u(s)

)
ds –

tα–

ηα– – Tα–

∫ T

ε

(T – s)α–

�(α)
f
(
s,u(s)

)
ds

–
∫ t

ε

(t – s)α–

�(α)
f
(
s,u(s)

)
ds =

∫ T

ε

G(t, s)f
(
s,u(s)

)
ds.

This completes the proof. �

Now, we are ready to state and prove our first main result.

Theorem . Let  < ε < T be given and let τ and ϕ be two functions on (ε,T) such that
ϕ(t) ≥ τ (t) for all t ∈ (ε,T). Suppose that τ : (ε,T) → (, ) is a surjection and f (t,u(t)) ∈
C([ε,T] × [,∞]) is increasing in u for each fixed t, f (t,u(t)) ≤  and f (t, τ (λ)u(t)) ≥

http://www.boundaryvalueproblems.com/content/2013/1/112
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ϕ(λ)f (t,u(t)) for all t,λ ∈ (ε,T) and u ∈ P. Assume that there exist M > , M >  and
θ 
= h ∈ P such that

Mh(t) ≤
∫ T

ε

G(t, s)f
(
s,h(s)

)
ds≤ Mh(t)

for all t ∈ [ε,T],where G(t, s) is the green function defined in Lemma .. Then the problem
(.) with the boundary value condition (.) has a unique positive solution u∗ ∈ Ph.More-
over, for the sequence un+ =

∫ T
ε
G(t, s)f (s,un(s))ds, we have ‖un – u∗‖ →  for all u ∈ Ph.

Proof By using Lemma ., the problem is equivalent to the integral equation

u(t) =
∫ T

ε

G(t, s)f
(
s,u(s)

)
ds,

where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tα–(η–s)α––tα–(T–s)α–
(ηα––Tα–)�(α) – (t–s)α–

�(α) , ε ≤ s ≤ η ≤ t ≤ T ,
–tα–(T–s)α–

(ηα––Tα–)�(α) –
(t–s)α–

�(α) , ε ≤ η ≤ s ≤ t ≤ T ,
–tα–(T–s)α–

(ηα––Tα–)�(α) , ε ≤ η ≤ t ≤ s ≤ T .

Define the operator A : P → E by Au(t) =
∫ T
ε
G(t, s)f (s,u(s))ds. Then u is a solution for the

problem if and only if u = Au. It is easy to check that the operator A is increasing on P. On
the other hand,

A
(
τ (λ)u

)
(t) =

∫ T

ε

G(t, s)f
(
s, τ (λ)u(s)

)
ds

≥ ϕ(λ)
∫ T

ε

G(t, s)f
(
s,u(s)

)
ds = ϕ(λ)Au(t)

for all λ ∈ [ε,T] and u ∈ P. Thus, the operator A is τ -ϕ-concave. Since

Mh(t) ≤ Ah(t) =
∫ T

ε

G(t, s)f
(
s,h(s)

)
ds≤ Mh(t)

for all t ∈ [ε,T], we get Ah ∈ Ph. Now, by using Theorem ., the operator A has a unique
positive solution u∗ ∈ Ph. This completes the proof. �

Here, we give the following example to illustrate Theorem ..

Example . Let  < ε <  be given. Consider the periodic boundary value problem

D

 u(t) +

{
g(t) +

[
u(t)

]α}
= 

(
t ∈ [ε, ]

)
,

u(η) = u(),

http://www.boundaryvalueproblems.com/content/2013/1/112
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where η ∈ (ε, t), g is continuous on [ε, ] and mint∈[ε,] g(t) > . Put

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

t–/(η–s)–/–t–/(–s)–/
(η–/––/)�(/) – (t–s)–/

�(/) , ε ≤ s≤ η ≤ t ≤ ,
–t–/(–s)–/

(η–/––/)�(/) –
(t–s)–/
�(/) , ε ≤ η ≤ s≤ t ≤ ,

–t–/(–s)–/
(η–/––/)�(/) , ε ≤ η ≤ t ≤ s ≤ .

Then
∫ 
ε
G(t, s)ds = t–/(η–ε)/–t–/(–ε)/–(t–ε)/(η–/–)

�(/)(η–/–) . Now, define τ (t) = t,ϕ(t) = t/, γ =
mint∈[ε,] g(t), γ =maxt∈[ε,] g(t) and also f (t,u) = g(t) +u/ for all t. Then τ : (, )→ (, )
is a surjection and ϕ(t) > τ (t) for all t ∈ (ε, ). For each u≥ , we have

f
(
t, τ (λ)u(t)

)
= f

(
t,λu(t)

)
= g(t) + λ/[u(t)]/

≥ λ/(g(t) + [
u(t)

]/) = ϕ(λ)f
(
t,u(t)

)
.

Now, put h ≡ , M = (γ + )mint∈[ε,],η∈[ε,] –t–/(–ε)/–(t–ε)/(η–/–)
�(/)(η–/–) and M = (γ +

)maxη∈[ε,] ε–/η/

�(/)(η–/–) . Then we get

∫ 

ε

G(t, s)
{
g(s) +

[
h(s)

]/}ds

≤
∫ 

ε

G(t, s)(γ + )ds

≤ (γ + ) max
t∈[ε,]

∫ 

ε

G(t, s)ds≤ (γ + )
(
max
η∈[ε,]

ε–/η/

�(/)(η–/ – )

)
=Mh

and
∫ 

ε

G(t, s)
{
g(s) +

[
h(s)

]/}ds

≥ (γ + ) min
t∈[ε,]

∫ 

ε

G(t, s)ds

≥ (γ + ) min
t∈[ε,],η∈[ε,]

–t–/( – ε)/ – (t – ε)/(η–/ – )
�(/)(η–/ – )

=Mh.

Thus, by using Theorem ., the problem has a unique solution in Ph = P.

2.2 Existence results for the fractional differential equation with the Caputo
fractional derivative

Here, we study the existence and uniqueness of a positive solution for the fractional dif-
ferential equation

cDαu(t) + f
(
t,u(t)

)
= 

(
t ∈ [,T],T ≥ ,  < α < 

)
, (.)

u() = βu(η), u(T) = βu(η)
(
η ∈ (, t),  < β < β < 

)
, (.)

where cDα is the Caputo fractional derivative of order α. Let E = C[,T] be the Banach
space of continuous functions on [,T] with the sup norm and

P =
{
y ∈ C[,T] : min

t∈[,T]
y(t) ≥ 

}
.

http://www.boundaryvalueproblems.com/content/2013/1/112
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It is known that P is a normal cone. Similar to the proof of Lemma ., we can prove the
following result.

Lemma . Let  < α < , T ≥ , t ∈ [,T], η ∈ (, t) and  < β < β < . Then the problem
cDαu(t) + f (t,u(t)) =  with the boundary value conditions u() = βu(η) and u(T) = βu(η)
has a solution u if and only if u is a solution of the fractional integral equation u(t) =∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

[βT+t(β–β)](η–s)α–+t(T–s)α––T(t–s)α–
T�(α) , ≤ s ≤ η ≤ t ≤ T ,

t(T–s)α––T(t–s)α–
T�(α) , ≤ η ≤ s ≤ t ≤ T ,

t(T–s)α–
T�(α) , ≤ η ≤ t ≤ s ≤ T .

Theorem. Let T ≥  be given and let τ and ϕ be two positive-valued functions on (,T)
such that ϕ(t) ≥ τ (t) for all t ∈ (,T). Suppose that τ : (,T) → (, ) is a surjection and
f (t,u(t)) ∈ C([ε,T] × [,∞]) is increasing in u for each fixed t, f (t,u(t)) =  whenever  <
η < s < t < T and f (t,u(t))≥  otherwise, and also f (t, τ (λ)u(t))≥ ϕ(λ)f (t,u(t)) for all t,λ ∈
(,T) and u ∈ P. Assume that there exist M > ,M >  and θ 
= h ∈ P such that

Mh(t) ≤
∫ T


G(t, s)f

(
s,h(s)

)
ds≤ Mh(t)

for all t ∈ [,T],where G(t, s) is the green function defined in Lemma ..Then the problem
(.)with the boundary value conditions (.) has a unique positive solution u∗ ∈ Ph.More-
over, for the sequence un+ =

∫ T
ε
G(t, s)f (s,un(s))ds, we have ‖un – u∗‖ →  for all u ∈ Ph.

Proof It is sufficient to define the operator A : P → E by

Au(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds.

Now, by using a similar proof of Theorem ., one can show that Au(t) ≥  for all u ∈ P
and t ∈ [,T], and also the operator A is τ -ϕ-concave. By using Theorem ., the operator
A has a unique positive solution u∗ ∈ Ph. This completes the proof by using Lemma ..�

Below we present an example to illustrate Theorem ..

Example . Let α = 
 . Consider the periodic boundary value problem

cDαu(t) + g(t) +
[
u(t)

]α = 
(
t ∈ [, ]

)
,

u() =


u
(



)
u() =



u
(



)
,

where g is a continuous function on [, ] with mint∈[,] g(t) > . Put β = η = /, β = /
and

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

[  +

 t](


 –s)

/+t(–s)/–(t–s)/

�(/) ,  ≤ s ≤ η ≤ t ≤ ,
t(–s)/–(t–s)/

�(/) ,  ≤ η ≤ s ≤ t ≤ ,
t(–s)/
�(/) ,  ≤ η ≤ t ≤ s ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/112
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Then
∫ 
 G(t, s)ds =

[  +

 t](


 )

/+t–t/

�(/) . Now, define τ (t) = t, ϕ(t) = tα , γ = mint∈[,] g(t),
γ = maxt∈[,] g(t) and f (t,u) = g(t) + uα . Then it is easy to see that τ : (, ) → (, ) is
a surjection map and ϕ(t) > τ (t) for t ∈ (, ). Also, we have

f
(
t, τ (λ)u(t)

)
= f

(
t,λu(t)

)
= g(t) + λα

[
u(t)

]α

≥ λα
(
g(t) +

[
u(t)

]α)
= ϕ(λ)f

(
t,u(t)

)

for all u ≥ . Now, put h ≡ , M = (γ + )mint∈[,]
– 
 t(


 )

/–t/

�(/) and also M = (γ +

)

 (


 )

/+
�(/) . Then we have

∫ 


G(t, s)

{
g(s) +

[
h(s)

]/}ds

≤
∫ 


G(t, s)(γ + )ds

≤ (γ + ) max
t∈[,]

∫ 


G(t, s)ds≤ (γ + )


 (


 )

/ + 
�(/)

=Mh

and

∫ 


G(t, s)

{
g(s) +

[
h(s)

]/}ds≥ (γ + ) min
t∈[,]

∫ 


G(t, s)ds

≥ (γ + ) min
t∈[,]

– 
 t(


 )

/ – t/

�(/)
=Mh.

Thus, by using Theorem ., the problem has a unique solution in Ph = P.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Authors contributed equally in writing this article. Authors read and approved the final version of the manuscript.

Author details
1Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi
Arabia. 2Department of Mathematics, Cankaya University, Ogretmenler Cad. 14 06530, Balgat, Ankara, Turkey. 3Institute
of Space Sciences, Magurele, Bucharest, Romania. 4Department of Mathematics, Texas A&M University, University Blvd.,
Kingsville, 78363-8202, USA. 5Department of Mathematics, Azarbaidjan Shahid Madani University, Azarshahr, Tabriz, Iran.

Acknowledgements
This work is partially supported by the Scientific and Technical Research Council of Turkey. Research of the third and forth
authors was supported by Azarbaidjan Shahid Madani University. Also, the authors express their gratitude to the referees
for their helpful suggestions which improved final version of this paper.

Received: 9 August 2012 Accepted: 16 April 2013 Published: 3 May 2013

References
1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
2. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York

(1993)
3. Oldham, KB, Spainer, J: The Fractional Calculus. Academic Press, New York (1974)
4. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
5. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integral and Derivative: Theory and Applications. Gordon & Breach,

Switzerland (1993)

http://www.boundaryvalueproblems.com/content/2013/1/112


Baleanu et al. Boundary Value Problems 2013, 2013:112 Page 8 of 8
http://www.boundaryvalueproblems.com/content/2013/1/112

6. Weitzner, H, Zaslavsky, GM: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 15,
939-945 (2010)

7. Ahmad, B, Nieto, JJ: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional
differential equations. Abstr. Appl. Anal. 2009, Article ID 494720 (2009)

8. Al-Mdallal, M, Syam, MI, Anwar, MN: A collocation-shooting method for solving fractional boundary value problems.
Commun. Nonlinear Sci. Numer. Simul. 15, 3814-3822 (2010)

9. Belmekki, M, Nieto, JJ, Rodriguez-Lopez, R: Existence of periodic solution for a nonlinear fractional differential
equation. Bound. Value Probl. 2009, Article ID 324561 (2009)

10. Baleanu, D, Mohammadi, H, Rezapour, S: Positive solutions of a boundary value problem for nonlinear fractional
differential equations. Abstr. Appl. Anal. 2012, Article ID 837437 (2012)

11. Baleanu, D, Mohammadi, H, Rezapour, S: Some existence results on nonlinear fractional differential equations. Philos.
Trans. R. Soc. A, Math. Phys. Eng. Sci. 371(1990), Article ID 20120144 (2013)

12. Baleanu, D, Mustafa, OG, Agarwal, RP: On the solution set for a class of sequential fractional differential equations.
J. Phys. A, Math. Theor. 43(38), Article ID 385209 (2010)

13. Zhai, C-B, Cao, X-M: Fixed point theorems for τ -ϕ-concave operators and applications. Comput. Math. Appl. 59,
532-538 (2010)

14. Delbosco, D, Rodino, L: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl.
204, 609-625 (1996)

15. Hashim, I, Abdulaziz, O, Momani, S: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer.
Simul. 14, 674-684 (2009)

16. Jafari, H, Daftardar-Gejji, V: Positive solution of nonlinear fractional boundary value problems using Adomin
decomposition method. J. Appl. Math. Comput. 180, 700-706 (2006)

17. Zhao, Y, Sun, SH, Han, Z: The existence of multiple positive solutions for boundary value problems of nonlinear
fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 2086-2097 (2011)

18. Zhang, S: The existence of a positive solution for nonlinear fractional differential equation. J. Math. Anal. Appl. 252,
804-812 (2000)

19. Zhang, S: Existence of positive solutions for some class of nonlinear fractional equation. J. Math. Anal. Appl. 278,
136-148 (2003)

20. Agarwal, RP, Lakshmikantam, V, Nieto, JJ: On the concept of solution for fractional differential equations with
uncertainty. Nonlinear Anal. 72, 2859-2862 (2010)

21. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods. Series on
Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

22. Qiu, T, Bai, Z: Existence of positive solution for singular fractional equations. Electron. J. Differ. Equ. 146, 1-9 (2008)
23. Sabatier, J, Agarwal, OP, Machado, JAT: Advances in Fractional Calculus. Theorical Developments and Applications in

Physics and Engineering. Springer, Berlin (2007)
24. Rezapour, S, Hamlbarani Haghi, R: Some notes on the paper ‘Cone metric spaces and fixed point theorems of

contractive mappings’. J. Math. Anal. Appl. 345, 719-724 (2008)

doi:10.1186/1687-2770-2013-112
Cite this article as: Baleanu et al.: Some existence results for a nonlinear fractional differential equation on partially
ordered Banach spaces. Boundary Value Problems 2013 2013:112.

http://www.boundaryvalueproblems.com/content/2013/1/112

	Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces
	Abstract
	Introduction
	Main results
	Existence results for the fractional differential equation with the Riemann-Liouville fractional derivative
	Existence results for the fractional differential equation with the Caputo fractional derivative

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


