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1 Introduction
In this article, we consider the existence of solutions for the following class of singular
fractional differential equations:

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + p(t)f (t, u(t)) + q(t)g(t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u() =

∫ 
 h(s)u(s) dA(s),

(.)

where n –  < α ≤ n, n ≥ , p, q ∈ C(, ), p(t) and q(t) are allowed to be singular at t =  or
t = , f , g : [, ]× (,∞) → [,∞) are continuous and may be singular at x = , h : (, ) →
[,∞) is continuous with h ∈ L(, ), and

∫ 
 h(s)u(s) dA(s) denotes the Riemann-Stieltjes

integral with a signed measure, in which A : [, ] →R is a function of bounded variation.
Fractional differential equations have attracted more and more attention from the re-

search communities due to their numerous applications in many fields of science and
engineering including fluid flow, rheology, diffusive transport akin to diffusion, electri-
cal networks, probability, etc. For details, see [–] and the references therein. On the
other hand, boundary value problems with integral boundary conditions for ordinary dif-
ferential equations arise in many fields of applied mathematics and physics such as heat
conduction, chemical engineering, underground water flow, thermoelasticity, and plasma
physics. The existence and multiplicity of positive solutions for such problems have be-
come an important area of investigation in recent years.
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Cabada and Hamdi [] studied the existence of positive solutions of the following non-
linear fractional differential equation with integral boundary value conditions:

{
Dα

+ u(t) + f (t, u(t)) = ,  < t < ,
u() = u′() = , u() = λ

∫ 
 u(s) ds,

where  < α ≤ ,  < λ, λ �= α, Dα
+ is the Riemann-Liouville fractional derivative, and f :

[, ] × [,∞) → [,∞) is a continuous function.
By means of the monotone iteration method, Sun and Zhao [] investigated the exis-

tence of positive solutions for the fractional differential equation with integral boundary
conditions

{
Dα

+ u(t) + q(t)f (t, u(t)) = ,  < t < ,
u() = u′() = , u() =

∫ 
 g(s)u(s) ds,

where  < α ≤ , Dα
+ is the standard Riemann-Liouville derivative of order α, f : [, ] ×

[,∞) → [,∞) is continuous, and g, q : (, ) → [,∞) are also continuous with g, q ∈
L(, ).

Zhang et al. [] considered the following nonlinear fractional differential equation with
integral boundary conditions:

{
Dα

+ u(t) + h(t)f (t, u(t)) = ,  < t < ,
u() = u′() = u′′() = , u() = λ

∫ η

 u(s) ds,

where  < α ≤ ,  < η ≤ ,  ≤ ληα

α
< , Dα

+ is the Riemann-Liouville fractional derivative,
h : (, ) → [,∞) is continuous, and f : [, ] × [,∞) → [,∞) is also continuous.

Motivated by the above-mentioned papers, the purpose of this article is to investigate
the existence of positive solutions for the more general fractional differential equations
BVP (.) under suitable conditions on f and g . Obviously, our discussion is different from
that in [–]. The main new features presented in this paper are as follows. First, the
boundary value problem has a more general form, in which p, q are allowed to be singular
at t = ,  and f , g may be singular at x = . Second, the existence and multiplicity of posi-
tive solutions of BVP (.) are obtained. Third,

∫ 
 u(s) dA(s) denotes the Riemann-Stieltjes

integral, where A is a function of bounded variation, and dA may be a signed measure.
The work includes the multipoint boundary problems and integral boundary problems as
special cases.

The rest of the paper is organized as follows. In Section , we present some preliminaries
and lemmas that are used to prove our main results. We also develop some properties of
the Green function. In Section , we discuss the existence of a positive solution of BVP
(.). In Section , we discuss the existence of multiple positive solutions of BVP (.). In
Section , we give an example to demonstrate an application of our theoretical results.

2 Preliminaries and lemmas
In this section, for the convenience of reader, we present some notation and lemmas that
will be used in the proof of our main results. They can be found in the literature; see [, ,
, ].
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Definition . The Riemann-Liouville fractional integral of order α >  of a function y :
(,∞) →R is given by

Iα
+ y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function y : (,∞) →R is given by

Dα
+ y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+ ds,

where n = [α] +  with [α] denoting the integer part of a number α, provided that the
right-hand side is pointwise defined on (,∞).

Lemma . [] Let α > . If u ∈ C(, ) ∩ L(, ), then the fractional differential equation

Dα
+ u(t) = 

has

u(t) = Ctα– + Ctα– + · · · + CN tα–N , Ci ∈R, i = , , . . . , N ,

as the unique solution, where N = [α] + .

From the definition of the Riemann-Liouville derivative we can obtain the following
statement.

Lemma . [] Assume that u ∈ C(, )∩L(, ) with a fractional derivative of order α > 
that belongs to C(, ) ∩ L(, ). Then

Iα
+ Dα

+ u(t) = u(t) + Ctα– + Ctα– + · · · + CN tα–N

for some Ci ∈R (i = , , . . . , N ), where N = [α] + .

In the following, we present the Green function of the fractional differential equation
boundary value problem.

Lemma . Given y ∈ C(, ) ∩ L(, ), n –  < α ≤ n, the problem

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + y(t) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u() =

∫ 
 h(s)u(s) dA(s)

(.)

is equivalent to

u(t) =
∫ 


G(t, s)y(s) ds,
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where

G(t, s) = G(t, s) +
tα–

 – �
gA(s) (.)

with

G(t, s) =


�(α)

{
[t( – s)]α– – (t – s)α–,  ≤ s ≤ t ≤ ,
[t( – s)]α–,  ≤ t ≤ s ≤ ,

� =
∫ 


tα–h(t) dA(t), gA(s) =

∫ 


G(t, s)h(t) dA(t).

Proof We may apply Lemma . to reduce (.) to the equivalent integral equation

u(t) = –Iα
+ y(t) + Ctα– + Ctα– + · · · + Cntα–n

for some Ci ∈ R (i = , , . . . , n). Consequently, the general solution of (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + Ctα– + Ctα– + · · · + Cntα–n. (.)

Since u() = u′() = · · · = u(n–)() = , we get that C = C = · · · = Cn =  by (.). Then,
we obtain

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds + Ctα–. (.)

On the other hand, we can combine (.) with

u() = –


�(α)

∫ 


( – s)α–y(s) ds + C,

yielding

C =


�(α)

∫ 


( – s)α–y(s) ds +

∫ 


h(s)u(s) dA(s). (.)

So, by (.) and (.) we have

u(t) = –


�(α)

∫ t


(t – s)α–y(s) ds +

tα–

�(α)

∫ 


( – s)α–y(s) ds

+ tα–
∫ 


h(s)u(s) dA(s)

=


�(α)

∫ t



[
tα–( – s)α– – (t – s)α–]y(s) ds

+


�(α)

∫ 

t
tα–( – s)α–y(s) ds + tα–

∫ 


h(s)u(s) dA(s).
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Let

G(t, s) =


�(α)

{
[t( – s)]α– – (t – s)α–,  ≤ s ≤ t ≤ ,
[t( – s)]α–,  ≤ t ≤ s ≤ .

Then

u(t) =
∫ 


G(t, s)y(s) ds + tα–

∫ 


h(s)u(s) dA(s). (.)

Multiplying both sides of (.) by h(t) and then integrating from  to , we have

∫ 


h(t)u(t) dA(t) =

∫ 


h(t)

∫ 


G(t, s)y(s) ds dA(t)

+
∫ 


tα–h(t)

∫ 


h(s)u(s) dA(s) dA(t). (.)

Then, by (.) we obtain

(

 –
∫ 


tα–h(t) dA(t)

)∫ 


h(t)u(t) dA(t) =

∫ 



∫ 


h(t)G(t, s) dA(t)y(s) ds. (.)

Let

� =
∫ 


tα–h(t) dA(t), gA(s) =

∫ 


G(t, s)h(t) dA(t). (.)

From (.) and (.) we deduce that

∫ 


h(t)u(t) dA(t) =


 – �

∫ 


gA(s)y(s) ds. (.)

Substituting (.) into (.), we obtain

u(t) =
∫ 


G(t, s)y(s) ds +

tα–

 – �

∫ 


gA(s)y(s) ds =

∫ 


G(t, s)y(s) ds.

The proof is complete. �

Lemma . Let  ≤ � <  and gA(s) ≥  for s ∈ [, ]. Then the Green function G(t, s) de-
fined by (.) satisfies

() G : [, ] × [, ] → [,∞) is continuous.
() For any t, s ∈ [, ], we have c(t)φ(s) ≤ G(t, s) ≤ φ(s), where

φ(s) = φ(s) +
gA(s)
 – �

, φ(s) =
τ (s)α–s( – s)α–

�(α – )
,

τ (s) =
s

 – ( – s) α–
α–

, c(t) = min

{
(α – )α–tα–( – t)

(α – )α– , tα–
}

.

() Then, taking θ ∈ (, 
 ), for any t ∈ [θ ,  – θ ] and s ∈ [, ], we have G(t, s) ≥ γφ(s),

where γ = minθ≤t≤–θ c(t) ∈ (, ).
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The proof of Lemma . is similar to that in [], so we omit it.

Remark . By Lemma . we can obtain that α–
α– ≤ τ (s) ≤ , φ(s) ≤ 

α– . That is, φ(s)
is bounded, and there exists a constant g >  such that φ(s) ≤ g . It is easy to verify that
max≤t≤ c(t) ≤ .

Let E = C[, ] and ‖u‖ = sup≤t≤ | u(t) |. Then (E,‖ · ‖) is a Banach space. Let

P =
{

u ∈ E : u(t) ≥ , t ∈ [, ]
}

and

K =
{

u ∈ P : u(t) ≥ c(t)‖u‖, t ∈ [, ]; u(t) ≥ γ‖u‖, t ∈ [θ ,  – θ ]
}

,

and let Kr = {u ∈ K : ‖u‖ < r}. It is easy to see that K is a cone in E and KR \ Kr ⊂ K ⊂ P.
Throughout the paper, we need the following conditions:

(H) A : [, ] →R is a function of bounded variation, and gA(s) ≥  for all s ∈ [, ];
(H) h ∈ C(, ) ∩ L(, ), and  ≤ � =

∫ 
 tα–h(s) dA(s) < ;

(H) p, q : (, ) → [,∞) are continuous, p(t) �≡ , q(t) �≡ , t ∈ [, ], and

∫ 


φ(s)p(s) ds < +∞,

∫ 


φ(s)q(s) ds < +∞;

(H) f , g : [, ] × (,∞) → [,∞) are continuous, and for any  < r < R < +∞,
limm→∞ supu∈KR\Kr

∫

H(m)(p(s)f (s, u(s)) + q(s)g(s, u(s))) ds = , where H(m) = [, 
m ] ∪

[ m–
m , ].

In what follows, let us define the nonlinear operator T : KR \ Kr → K by

(Tu)(t) =
∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds, t ∈ [, ]. (.)

Lemma . Suppose that (H)-(H) hold. Then T : KR \Kr → K is a completely continuous
operator and the fixed point of T in KR \ Kr is the positive solution to BVP (.).

Proof It follows from (H) that there exists a natural number m ≥  such that

sup
u∈KR\Kr

∫

H(m)
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds < .

It is easy to see that for any u ∈ KR \ Kr and t ∈ [ 
m , m–

m ], we have λr ≤ u(t) ≤ R, where
λ = min{c(t) : 

m ≤ t ≤ m–
m } > . Let

M = max

{

f (t, x) :

m

≤ t ≤ m – 
m

,λr ≤ x ≤ R
}

,

M = max

{

g(t, x) :

m

≤ t ≤ m – 
m

,λr ≤ x ≤ R
}

.
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So, by (H), (H), and Remark . we have

sup
u∈KR\Kr

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

≤ sup
u∈KR\Kr

∫ 


φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

≤ g sup
u∈KR\Kr

∫

H(m)
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds

+ sup
u∈KR\Kr

∫ m–
m


m

φ(s)
[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

≤ g + (M + M)
∫ m–

m


m

φ(s)
(
p(s) + q(s)

)
ds

≤ g + (M + M)
∫ 


φ(s)

(
p(s) + q(s)

)
ds < +∞.

This implies that the operator T defined by (.) is well defined.
Now, we show that T : KR \ Kr ⊂ K . For any u ∈ KR \ Kr , t ∈ [, ], we have

(Tu)(t) =
∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

≤
∫ 


φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds.

Hence,

‖Tu‖ ≤
∫ 


φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds.

On the other hand, by Lemma . we have

(Tu)(t) ≥ c(t)
∫ 


φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds ≥ c(t)‖Tu‖, t ∈ [, ],

and at the same time, we can get

(Tu)(t) ≥ γ‖Tu‖, t ∈ [θ ,  – θ ].

Thus, Tu ∈ K . Consequently, T : KR \Kr ⊂ K . Finally, we prove that T , which maps KR \Kr

into K , is a completely continuous map. Let D ⊂ KR \Kr be an arbitrary bounded set. Then
from the previous proof we know that T(D) is uniformly bounded.

Next, we show T(D) is equicontinuous. In fact, for any ε > , there exists a natural num-
ber m ≥  such that

sup
u∈KR\Kr

∫

H(m)
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds <

ε

g
. (.)
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Since G(t, s) is uniformly continuous on [, ]× [, ], for the above ε > , there exists δ > 
such that for any t, t ∈ [, ], |t – t| < δ, s ∈ [ 

m , m–
m ],

∣
∣G(t, s) – G(t, s)

∣
∣ <

ε

(pM + qM)
.

Consequently, for any u ∈ D, t, t ∈ [, ], |t – t| < δ, we have

∣
∣(Tu)(t) – (Tu)(t)

∣
∣

=
∣
∣
∣
∣

∫ 



(
G(t, s) – G(t, s)

)(
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

))
ds

∣
∣
∣
∣

≤ 
∫

H(m)
φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

+ sup
u∈D

∫ m–
m


m

∣
∣
(
G(t, s) – G(t, s)

)∣
∣
(
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

))
ds

< g
ε

g
+

ε

(pM + qM)
(pM + qM)

= ε,

where

p = max

{

p(t) :

m

≤ t ≤ m – 
m

}

, q = max

{

q(t) :

m

≤ t ≤ m – 
m

}

.

This shows that T(D) is equicontinuous. By the Arzela-Ascoli theorem, T : D → K is com-
pact.

Finally, we prove that T : KR \ Kr → K is continuous. Assume that u, un ∈ KR \ Kr (n =
, , , . . . ) and ‖un – u‖ →  (n → ∞). Then r ≤ ‖un‖ ≤ R and r ≤ ‖u‖ ≤ R. For any
ε > , by (H) there exists a natural number m ≥  such that

sup
u∈KR\Kr

∫

H(m)
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds <

ε

g
.

On the other hand, for any t ∈ [ 
m , m–

m ], we have γr ≤ un(t) ≤ R (n = , , , . . . ). Since
f (t, u), g(t, u) are uniformly continuous in [ 

m , m–
m ] × [γr, R], we have that

lim
n→∞

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ = ,

lim
n→∞

∣
∣g

(
s, un(s)

)
– g

(
s, u(s)

)∣
∣ = 

uniformly on [ 
m , m–

m ]. Then the Lebesgue dominated convergence theorem yields that

∫ m–
m


m

φ(s)
[
p(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))
+ q(s)

(
g
(
s, un(s)

)
– g

(
s, u(s)

))]
ds → ,

n → ∞.
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Thus, for the above ε > , there exists a natural number N such that for n > N , we have

∫ m–
m


m

φ(s)
[
p(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))
+ q(s)

(
g
(
s, un(s)

)
– g

(
s, u(s)

))]
ds <

ε


. (.)

It follows from (.), (.) that for n > N ,

‖Tun – Tu‖ ≤ sup
u∈KR\Kr

∫

H(m)
φ(s)

[
p(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))

+ q(s)
(
g
(
s, un(s)

)
– g

(
s, u(s)

))]
ds

+ sup
u∈KR\Kr

∫ m–
m


m

φ(s)
[
p(s)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))

+ q(s)
(
g
(
s, un(s)

)
– g

(
s, u(s)

))]
ds

< g
ε

g
+

ε


= ε.

This implies that T : KR \ Kr → K is continuous. Thus, T : KR \ Kr → K is completely
continuous. It is clear that if u is a fixed point of T in KR \ Kr , then u satisfies (.) and is a
positive solution of BVP (.). �

To prove the main results, we need the following well-known fixed point theorem.

Lemma . [] Let P be a positive cone in a Banach space E, � and � be two bounded
open sets in E such that θ ∈ � and � ⊂ �, A : P ∩ (� \ �) → P be a completely con-
tinuous operator, where θ denotes the zero element of E. Suppose that one of the following
two conditions holds:

(i) ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂�; ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂�;
(ii) ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂�; ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂�.

Then A has a fixed point in P ∩ (� \ �).

3 Existence of a positive solution
In the following, for convenience, we set

f  = lim sup
x→

max
t∈[,]

f (t, x)
x

, g = lim sup
x→

max
t∈[,]

g(t, x)
x

,

f


= lim inf
x→

min
t∈[θ ,–θ ]

f (t, x)
x

, g


= lim inf
x→

min
t∈[θ ,–θ ]

g(t, x)
x

,

f ∞ = lim sup
x→∞

max
t∈[,]

f (t, x)
x

, g∞ = lim sup
x→∞

max
t∈[,]

g(t, x)
x

,

f ∞ = lim inf
x→∞ min

t∈[θ ,–θ ]

f (t, x)
x

, g∞ = lim inf
x→∞ min

t∈[θ ,–θ ]

g(t, x)
x

,

m =
[∫ 


φ(s)

[
p(s) + q(s)

]
ds

]–

, m =
[

γ

∫ –θ

θ

φ(s)p(s) ds
]–

,

m =
[

γ

∫ –θ

θ

φ(s)q(s) ds
]–

.
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Theorem . Let f , g : [, ] × [, +∞) → [, +∞) be continuous. Assume that (H)-(H)
and f  < m, g < m hold and one of the two conditions f ∞ > m and g∞ > m is satisfied.
Then BVP (.) has at least one positive solution.

Proof First, we consider the case f ∞ > m. Since f  < m, g < m, we can choose ε > 
such that m – ε >  and f  < m – ε, g < m – ε, and also there exists r >  such that
for any  < x ≤ r,  ≤ t ≤ , we have

f (t, x) ≤ (m – ε)x, g(t, x) ≤ (m – ε)x. (.)

Set � = {u ∈ E : ‖u‖ < r}. We can see that � is a bounded open subset in E, and for
any u ∈ ∂� ∩ K ,  < u(t) ≤ r , t ∈ [, ], from expression (.) we deduce the following
inequalities:

‖Tu‖ = sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

∣
∣
∣
∣

≤ (m – ε) sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s) + q(s)

]
u(s) ds

∣
∣
∣
∣

≤ (m – ε) sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s) + q(s)

]
ds

∣
∣
∣
∣‖u‖

≤ m

∫ 


φ(s)

[
p(s) + q(s)

]
ds‖u‖ = ‖u‖.

Consequently,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂� ∩ K . (.)

On the other hand, since f ∞ > m, we can choose ε >  such that f ∞ > (m + ε), and also
there exists R > r >  such that for any x ≥ R, t ∈ [θ ,  – θ ], we have

f (t, x) ≥ (m + ε)x. (.)

Let R = R
γ

and � = {u ∈ E : ‖u‖ < R}. It is easy to see that � is a bounded open subset
in E, and from the expression (.) we have that for any u ∈ ∂� ∩ K , u(t) ≥ γ‖u‖ = R,
t ∈ [θ ,  – θ ],

‖Tu‖ = sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

∣
∣
∣
∣

≥
∫ –θ

θ

G(t, s)p(s)f
(
s, u(s)

)
ds

≥ γ(m + ε)
∫ –θ

θ

φ(s)p(s) ds‖u‖

≥ γm

∫ –θ

θ

φ(s)p(s) ds‖u‖ = ‖u‖.

Consequently,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂� ∩ K . (.)
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Applying Lemma . to (.) and (.) yields that T has a fixed point u∗ ∈ K ∩ (� \ �),
and hence u∗ is a positive solution of BVP (.).

In a similar way, when the case that g∞ > m holds, we can prove that the conclusion of
Theorem . also holds. The proof of Theorem . is completed. �

Theorem . Assume that (H)-(H) and f ∞ < m, g∞ < m hold. Then BVP (.) has at
least one positive solution.

The proof is similar to the previous one, so we omit it.

4 Existence of multiple positive solutions
In this section, we discuss the existence of multiple positive solutions of BVP (.). We
obtain the following existence theorems.

Theorem . Assume that (H)-(H) hold and f ∞ > m are satisfied. Further, assume that
the following condition holds:

(∗)
∫ 


p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds <


g

, ∀u ∈ ∂� ∩ K ,

where φ(s) ≤ g , ∂� = {u ∈ E : ‖u‖ = }. Then BVP (.) has at least two positive solutions.

Proof Since g


= +∞ > m, there exist ε > ,  < r <  such that for any  < x ≤ r, θ ≤
t ≤  – θ , we have

g(t, x) ≥ (m + ε)x. (.)

Set � = {u ∈ E : ‖u‖ < r}. Then � is a bounded open subset in E, and for any u ∈ ∂� ∩K
and  < u(t) ≤ r, by expression (.) we have

‖Tu‖ = sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

∣
∣
∣
∣

≥
∫ –θ

θ

G(t, s)q(s)g
(
s, u(s)

)
ds

≥ γ(m + ε)
∫ –θ

θ

φ(s)q(s) ds‖u‖

≥ γm

∫ –θ

θ

φ(s)q(s) ds‖u‖ = ‖u‖.

Consequently,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂� ∩ K . (.)

Since f ∞ > m, there exist ε > , R >  such that for any x ≥ R, θ ≤ t ≤  – θ , we have

f (t, x) ≥ (m + ε)x. (.)
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Let R = R
γ

and � = {u ∈ E : ‖u‖ < R}. Then � is a bounded open subset in E, and so
for any u ∈ ∂� ∩ K and u(t) ≥ γ‖u‖ = R, t ∈ [θ ,  – θ ], by expression (.) we have

‖Tu‖ = sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

∣
∣
∣
∣

≥
∫ –θ

θ

G(t, s)p(s)f
(
s, u(s)

)
ds

≥ γ(m + ε)
∫ –θ

θ

φ(s)p(s) ds‖u‖

≥ γm

∫ –θ

θ

φ(s)p(s) ds‖u‖ = ‖u‖.

Consequently,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂� ∩ K . (.)

On the other hand, by (∗) we have for any u ∈ ∂� ∩ K , t ∈ [, ],

‖Tu‖ = sup
t∈[,]

∣
∣
∣
∣

∫ 


G(t, s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

∣
∣
∣
∣

≤
∫ 


φ(s)

[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds

≤ g
∫ 



[
p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)]
ds ≤ g


g

=  = ‖u‖.

Consequently,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂� ∩ K . (.)

Therefore, from (.), (.), and Lemma . it follows that BVP (.) has a positive solution
u ∈ K with r ≤ ‖u‖ < . In the same way, from (.), (.), and Lemma . it follows that
BVP (.) has a positive solution u ∈ K with  < ‖u‖ ≤ R. Therefore, BVP (.) has at least
two positive solutions u, u ∈ K . �

Theorem . Assume that (H)-(H) hold and g∞ > m are satisfied. Further, assume that
the following condition holds:

∫ 


p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds <


g

, ∀u ∈ ∂� ∩ K ,

where φ(s) ≤ g , ∂� = {u ∈ E : ‖u‖ = }. Then BVP (.) has at least two positive solutions.

The proof is similar to the previous one, so we omit it.
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5 Example
Example . We consider BVP (.) with α = 

 , p(t) = q(t) = 


√
–t , h(t) = t– 

 , f (t, x) =

 – t + | ln x| + x 
 , g(t, x) =  – t + | ln x|, and

A(t) =

{
, t ∈ [, 

 ),
, t ∈ [ 

 , ].

Thus, � =
∫ 

 t 
 t– 

 dA(t) = ×( 
 ) = 

 . Obviously, gA(s) ≤  and φ(s) = φ(s)+ gA(s)
–�

≤  = g .
We define the cone

K =
{

u ∈ C[, ] : u(t) ≥ c(t)‖u‖, t ∈ [, ]; u(t) ≥ γ‖u‖, t ∈ [θ ,  – θ ]
}

,

in which

c(t) = min

{ ( 
 ) 

 t 
 ( – t)







, t



}

.

For any  < r < R < +∞ and u ∈ KR\Kr , we have u(t) ≥ c(t)‖u‖, t ∈ [, ]. Then  ≤ rc(t) ≤
u(t) ≤ R, t ∈ [, ]. Since | ln x| is decreasing on (, ) and is increasing on (, +∞), we have

∣
∣ln u(x)

∣
∣ ≤ ∣

∣ln rc(t)
∣
∣ + | ln R| ≤ | ln r| + | ln R| +

∣
∣ln c(t)

∣
∣. (.)

It is easy to verify that | ln c(t)|


√
–t ∈ L(, ). The absolute continuity of the integral yields that

lim
m→∞

∫

H(m)

| ln c(s)|


√
 – s

ds = . (.)

So, by (.) and (.) we get

sup
u∈KR\Kr

∫

H(m)




√
 – s

[
 – s +

∣
∣ln u(s)

∣
∣ +  – s +

∣
∣ln u(s)

∣
∣ +

(
u(s)

) 

]

ds

≤
∫

H(m)




√
 – s

[
 – s + | ln r| + | ln R| + 

∣
∣ln c(s)

∣
∣ + R



]

ds

≤ (
 + R


 + | ln r| + | ln R|)

∫

H(m)




√
 – s

ds +
∫

H(m)




√
 – s

∣
∣ln c(s)

∣
∣ds

=
 + R 

 + | ln r| + | ln R|


[

arcsin

m

+ arcsin  – arcsin

(

 –

m

)]

+
∫

H(m)




√
 – s

∣
∣ln c(s)

∣
∣ds. (.)

By (.) we know that, as m → ∞, the limit of (.) is . On the other hand, by calculation
we have

g


= lim inf
x→

min
t∈[θ ,–θ ]

g(t, x)
x

= lim inf
x→

 + θ + | ln x|
x

= ∞ > m,

f ∞ = lim inf
x→∞ min

t∈[θ ,–θ ]

f (t, x)
x

= lim inf
x→∞

 + θ + | ln x|
x

+ x

 = ∞ > m,
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where

m = m =
[

γ

∫ –θ

θ

φ(s)


√
 – s

ds
]–

with γ = minθ≤t≤–θ c(t). On the other hand, for any u ∈ ∂� ∩ K , t ∈ [, ], we have

f
(
t, u(t)

)
+ g

(
t, u(t)

)
=  – t + 

∣
∣ln u(t)

∣
∣ + u(t)




≤  + 
∣
∣ln c(t)

∣
∣.

So we obtain

∫ 


p(s)f

(
s, u(s)

)
+ q(s)g

(
s, u(s)

)
ds =

∫ 






√
 – s

[
f
(
s, u(s)

)
+ g

(
s, u(s)

)]
ds

≤
∫ 






√
 – s

[
 + 

∣
∣ln c(s)

∣
∣
]

ds

=
π


+




∫ 



| ln c(s)|√
 – s

ds

≤ π


+




<



.

Therefore, the assumptions of Theorem . are satisfied. Thus the problem considered
possesses two positive solutions in K .
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