64 research outputs found

    Establishing a governance threshold in small-scale fisheries to achieve sustainability

    Get PDF
    The lack of effective governance is a major concern in small-scale fisheries. The implementation of governance that encompasses the three pillars of sustainability (social, economic, and ecological) is still a worldwide challenge. We examined nine stalked barnacle fisheries (Pollicipes pollicipes) across Southwest Europe to better understand the relationship between governance elements and sustainability. Our results show that nested spatial scales of management, the access structure, co- management, and fisher’s participation in monitoring and surveillance promote sustainability. However, it is not the mere presence of these elements but their level of implementation that drives sustainability. Efforts should be placed in the accomplishment of a minimum combination of local scales of management, access rights through individual quotas, instructive-consultative co- management and functional participation. Surpassing this threshold in future governance structures will start to adequately promote social, economic and ecologically sustainability in small-scale fisheries

    Kelp carbon sink potential decreases with warming due to accelerating decomposition

    Get PDF
    Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale

    Ocean temperature controls kelp decomposition and carbon sink potential

    Get PDF
    Compelling new evidence shows that kelp production contributes an important and underappreciated flux of carbon in the ocean. Major questions remain, however, about the controls on the cycling of this organic carbon in the coastal zone, and their implications for future carbon sequestration. Here we used field experiments distributed across 28° latitude, and the entire range of two dominant kelps in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to environmental factors. Ocean temperature was the strongest control on detritus decomposition in both species, and it was positively related to decomposition. This suggests that decomposition could accelerate with ocean warming under climate change, increasing remineralization and reducing overall kelp carbon sequestration. However, we also demonstrate the potential for high kelp-carbon storage in cooler (northern) regions, which could be targeted by climate mitigation strategies to expand blue carbon sinks

    Confronting compositional confusion through the characterisation of the sub-Neptune orbiting HD 77946

    Get PDF
    We report on the detailed characterization of the HD 77946 planetary system. HD 77946 is an F5 (M∗M_* = 1.17 M⊙_{\odot}, R∗R_* = 1.31 R⊙_{\odot}) star, which hosts a transiting planet recently discovered by NASA's Transiting Exoplanet Survey Satellite (TESS), classified as TOI-1778 b. Using TESS photometry, high-resolution spectroscopic data from HARPS-N, and photometry from CHEOPS, we measure the radius and mass from the transit and RV observations, and find that the planet, HD 77946 b, orbits with period PbP_{\rm b} = 6.527282−0.000020+0.0000156.527282_{-0.000020}^{+0.000015} d, has a mass of Mb=8.38±1.32M_{\rm b} = 8.38\pm{1.32}M⊕_\oplus, and a radius of Rb=2.705−0.081+0.086R_{\rm b} = 2.705_{-0.081}^{+0.086}R⊕_\oplus. From the combination of mass and radius measurements, and the stellar chemical composition, the planet properties suggest that HD 77946 b is a sub-Neptune with a ∌\sim1\% H/He atmosphere. However, a degeneracy still exists between water-world and silicate/iron-hydrogen models, and even though interior structure modelling of this planet favours a sub-Neptune with a H/He layer that makes up a significant fraction of its radius, a water-world composition cannot be ruled out, as with Teq=1248−38+40 T_{\rm eq} = 1248^{+40}_{-38}~K, water may be in a supercritical state. The characterisation of HD 77946 b, adding to the small sample of well-characterised sub-Neptunes, is an important step forwards on our journey to understanding planetary formation and evolution pathways. Furthermore, HD 77946 b has one of the highest transmission spectroscopic metrics for small planets orbiting hot stars, thus transmission spectroscopy of this key planet could prove vital for constraining the compositional confusion that currently surrounds small exoplanets

    A large‑scale comparison of reproduction and recruitment of the stalked barnacle Pollicipes pollicipes across Europe

    Get PDF
    Understanding large-scale spatial and temporal patterns of marine populations is a central goal in ecology, which has received renewed attention under climate change. However, few studies explore the large-scale dynamics of populations using standardized protocols and during the same time frames. We studied the phenology and intensity of reproduction and recruitment for the intertidal stalked barnacle Pollicipes pollicipes over an European scale and described their potential linkages with environmental variables. This species supports profitable fisheries in the Iberian Peninsula (Spain and Portugal). In Brittany (France), we had observed a significant lower reproductive effort (long non-breeding season, short breeding period in summer) and low values of recruitment intensity. This pattern may be related to the fact that Brittany corresponds to the northern limit of the distribution of this species in continental Europe. On the Iberian Peninsula, the most different region was Galicia (Spain), with Asturias (Spain) and SW Portugal being more similar. In Galicia, we have observed a contradictory pattern characterized by the absence of a non-breeding period and by a shorter recruitment season than observed in other Iberian regions. Our results suggest that air temperature, SST and chlorophyll-a might be related to the variability in reproduction and recruitment patterns of P. pollicipes. Moreover, spring and early summer upwelling in SW Portugal and Galicia might be inhibiting recruitment in this period. At the northern limit, the expected increase in performance under climate change might facilitate the recovery of populations after exploitation, increasing the resilience of the resource to fishing pressure

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

    Get PDF
    Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.Fil: Christie, Alec P.. University of Cambridge; Reino UnidoFil: Abecasis, David. Universidad de Algarve. Centro de Ciencias del Mar; PortugalFil: Adjeroud, Mehdi. Université de Perpignan; Francia. Institut de Recherche Pour Le Developpement; FranciaFil: Alonso, Juan Carlos. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Amano, Tatsuya. University of Queensland; AustraliaFil: Anton, Alvaro. Universidad del País Vasco. Facultad de Educación de Bilbao; EspañaFil: Baldigo, Barry P.. United States Geological Survey; Estados UnidosFil: Barrientos, Rafael. Universidad Complutense de Madrid; EspañaFil: Bicknell, Jake E.. University of Kent; Reino UnidoFil: Buhl, Deborah A.. United States Geological Survey; Estados UnidosFil: Cebrian, Just. Mississippi State University; Estados UnidosFil: Ceia, Ricardo S.. Universidad de Coimbra; PortugalFil: Cibils Martina, Luciana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Clarke, Sarah. Marine Institute; IrlandaFil: Claudet, Joachim. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Craig, Michael D.. University of Western Australia; Australia. Murdoch University; AustraliaFil: Davoult, Dominique. Sorbonne University; FranciaFil: De Backer, Annelies. Flanders Research Institute for Agriculture, Fisheries and Food; BélgicaFil: Donovan, Mary K.. University of California; Estados Unidos. University of Hawaii at Manoa; Estados UnidosFil: Eddy, Tyler D.. University of South Carolina; Estados Unidos. Memorial University of Newfoundland; Canadå. Victoria University of Wellington; Nueva ZelandaFil: França, Filipe M.. Lancaster University; Reino UnidoFil: Gardner, Jonathan P. A.. Victoria University of Wellington; Nueva ZelandaFil: Harris, Bradley P.. Alaska Pacific University; Estados UnidosFil: Huusko, Ari. Natural Resources Institute Finland; FinlandiaFil: Jones, Ian L.. Memorial University of Newfoundland; CanadåFil: Kelaher, Brendan P.. Southern Cross University; AustraliaFil: Kotiaho, Janne S.. Universidad de Jyvaskyla; FinlandiaFil: López Baucells, Adrià. Universidad de Lisboa; Portugal. Smithsonian Tropical Research Institute; Panamå. Universidad Nacional de Colombia. Instituto de Investigaciones Amazonicas; Colombia. Museo de Ciencias Naturales de Granollers; EspañaFil: Major, Heather L.. University of New Brunswick; CanadåFil: MÀki PetÀys, Aki. Voimalohi Oy; Finlandia. University of Oulu; Finlandi

    Coping with poachers in European stalked barnacle fisheries: Insights from a stakeholder workshop.

    Get PDF
    In January 2020, a stakeholder workshop was organized as a knowledge sharing strategy among European stalked barnacle fisheries. Management of this fishery differs greatly among regions and ranges from less organized and governed at large scales (>100 km, coasts of SW Portugal and Brittany in France) to highly participatory systems which are co-managed at small spatial scales (10â€Čs km and less, Galicia and Asturias). Discussions revealed that poaching is ubiquitous, hard to eradicate, and adapts to all types of management. The stakeholders identified some key management initiatives in the fight against poaching: granting professional harvesters with exclusive access to the resource, increasing social capital among harvesters through tenure systems (e.g. Territorial Use Rights in Fisheries) that empower them as stewards of their resource and intensi- fication of surveillance with the active participation of the harvesters. Furthermore, increased cooperation be- tween fishers associations and regional fisheries authorities, improved legal frameworks, adoption of new technologies and the implementation of market-based solutions can also help coping with this systemic problem

    Stressed but Stable: Canopy Loss Decreased Species Synchrony and Metabolic Variability in an Intertidal Hard-Bottom Community

    Get PDF
    The temporal stability of aggregate community properties depends on the dynamics of the component species. Since species growth can compensate for the decline of other species, synchronous species dynamics can maintain stability (i.e. invariability) in aggregate properties such as community abundance and metabolism. In field experiments we tested the separate and interactive effects of two stressors associated with storminess–loss of a canopy-forming species and mechanical disturbances–on species synchrony and community respiration of intertidal hard-bottom communities on Helgoland Island, NE Atlantic. Treatments consisted of regular removal of the canopy-forming seaweed Fucus serratus and a mechanical disturbance applied once at the onset of the experiment in March 2006. The level of synchrony in species abundances was assessed from estimates of species percentage cover every three months until September 2007. Experiments at two sites consistently showed that canopy loss significantly reduced species synchrony. Mechanical disturbance had neither separate nor interactive effects on species synchrony. Accordingly, in situ measurements of CO2-fluxes showed that canopy loss, but not mechanical disturbances, significantly reduced net primary productivity and temporal variation in community respiration during emersion periods. Our results support the idea that compensatory dynamics may stabilise aggregate properties. They further suggest that the ecological consequences of the loss of a single structurally important species may be stronger than those derived from smaller-scale mechanical disturbances in natural ecosystems

    Relationships between biodiversity and the stability of marine ecosystems: comparisons at a European scale using meta-analysis.

    Get PDF
    The relationship between biodiversity and stability of marine benthic assemblages was investigated using existing data sets (n = 28) covering various spatial (m-km) and temporal (1973-2006) scales in different benthic habitats (emergent rock, rock pools and sedimentary habitats) through meta-analyses. Assemblage stability was estimated by measuring temporal variances of species richness, total abundance (density or % cover) and community species composition and abundance structure (using multivariate analyses). Positive relationships between temporal variability in species number and richness were generally observed at both quadrat (<1 m2) and site (100 m2) scales, while no relationships were observed by multivariate analyses. Positive relationships were also observed at the scale of site between temporal variability in species number and variability in community structure with evenness estimates. This implies that the relationship between species richness or evenness and species richness variability is slightly positive and depends on the scale of observation, suggesting that biodiversity per se is important for the stability of ecosystems. Changes within community assemblages in terms of structure are, however, generally independent of biodiversity, suggesting no effect of diversity, but the potential impact of individual species, and/or environmental factors. Except for sedimentary and rock pool habitats, no relationship was observed between temporal variation of the aggregated variable of total abundances and diversity at either scale. Overall our results emphasise that relationships depend on scale of measurements, type of habitats and the marine systems (North Atlantic and Mediterranean) considered
    • 

    corecore