212 research outputs found

    Equine West Nile encephalitis, United States.

    Get PDF
    After the 1999 outbreak of West Nile (WN) encephalitis in New York horses, a case definition was developed that specified the clinical signs, coupled with laboratory test results, required to classify cases of WN encephalitis in equines as either probable or confirmed. In 2000, 60 horses from seven states met the criteria for a confirmed case. The cumulative experience from clinical observations and diagnostic testing during the 1999 and 2000 outbreaks of WN encephalitis in horses will contribute to further refinement of diagnostic criteria

    Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans.

    Get PDF
    Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE(-/-) mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P = 0.002), smooth muscle cell content increased 2-fold (P = 0.03), while macrophage MHC class II expression decreased by 50% (P = 0.005). Also, the size of necrotic cores decreased by 41% (P = 0.01). In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P = 0.003), with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy

    Dietary nitrate intake is associated with decreased incidence of open-angle Glaucoma: The Rotterdam study

    Get PDF
    Previous studies suggest that nitric oxide is involved in the regulation of the intraocular pressure (IOP) and in the pathophysiology of open-angle glaucoma (OAG). However, prospective studies investigating the association between dietary nitrate intake, a source of nitric oxide, and incident (i)OAG risk are limited. We aimed to determine the association between dietary nitrate intake and iOAG, and to evaluate the association between dietary nitrate intake and IOP. From 1991 onwards, participants were followed each five years for iOAG in the Rotterdam Study. A total of 173 participants developed iOAG during follow-up. Cases and controls were matched on age (mean ± standard deviation: 65.7 ± 6.9) and sex (%female: 53.2) in a case:control ratio of 1:5. After adjustment for potential confounders, total dietary nitrate intake was associated with a lower iOAG risk (odds ratio (OR) with corresponding 95% confidence interval (95% CI): 0.95 (0.91–0.98) for each 10 mg/day higher intake). Both nitrate intake from vegetables (OR (95% CI): 0.95 (0.91–0.98) for each 10 mg/day higher intake) and nitrate intake from non-vegetable food sources (OR (95% CI): 0.63 (0.41–0.96) for each 10 mg/day higher intake) were associated with a lower iOAG risk. Dietary nitrate intake was not associated with IOP. In conclusion, dietary nitrate intake was associated with a reduced risk of iOAG. IOP-independent mechanisms may underlie the association with OAG

    Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum

    Get PDF
    DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.Fil: Veluchamy, Alaguraj. Institut de Biologie de l'École Normale SupĂ©rieure; FranciaFil: Lin, Xin. Institut de Biologie de l'École Normale SupĂ©rieure; Francia. Xiamen University; ChinaFil: Maumus, Florian.Fil: Rivarola, Maximo Lisandro.Fil: Bhavsar, Jaysheel.Fil: Creasy, Todd.Fil: O'Brien, Kimberly.Fil: Sengamalay, Naomi A..Fil: Tallon, Luke J..Fil: Smith, Andrew D..Fil: Rayko, Edda.Fil: Ahmed, Ikhlak.Fil: Crom, StĂ©phane Le.Fil: Farrant, Gregory K..Fil: Sgro, Jean-Yves.Fil: Olson, Sue A..Fil: Bondurant, Sandra Splinter.Fil: Allen, Andrew.Fil: Rabinowicz, Pablo D..Fil: Sussman, Michael R..Fil: Bowler, Chris.Fil: Tirichine, LeĂŻla

    Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem

    Full text link
    The observed primordial 7Li abundance in metal-poor halo stars is found to be lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of approximately three. Some recent works suggested the possibility that this discrepancy originates from missing resonant reactions which would destroy the 7Be, parent of 7Li. The most promising candidate resonances which were found include a possibly missed 1- or 2- narrow state around 15 MeV in the compound nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation energy region of 10C and the low excitation energy region in 11C via the reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution for the 7Li problem. Concerning 11C results, the data show no new resonances in the excitation energy region of interest and this excludes 7Be+4He reaction channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication

    The inflammatory potential of diet is associated with the risk of age-related eye diseases

    Get PDF
    Background &amp; aims: Inflammation is involved in the pathogenesis of cataract, age-related macular degeneration (AMD), and possibly open-angle glaucoma (OAG). We assessed whether the inflammatory potential of diet (quantified using the dietary inflammatory index; DII) affects the incidence of these common blinding age-related eye diseases. Serum inflammation markers were investigated as possible mediators.Methods: Participants aged &gt;45 years were selected from the prospective, population-based Rotterdam Study. From 1991 onwards, every 4–5 years, participants underwent extensive eye examinations. At baseline, blood samples and dietary data (using food frequency questionnaires) were collected. The DII was adapted based on the data available. Of the 7436 participants free of eye diseases at baseline, 4036 developed incident eye diseases during follow-up (cataract = 2895, early-intermediate AMD = 891, late AMD = 81, OAG = 169). Results: The adapted DII (aDII) ranged from −4.26 (i.e., anti-inflammatory) to 4.53 (i.e., pro-inflammatory). A higher aDII was significantly associated with increased inflammation. A higher neutrophil-lymphocyte ratio (NLR) was associated with an increased risk of cataract and AMD. Additionally, complement component 3c (C3c) and systemic immune-inflammation index (SII) were associated with increased risks of cataract and late AMD, respectively. Every point increase in the aDII was associated with a 9% increased risk of cataract (Odds ratio [95% confidence interval]: 1.09 [1.04–1.14]). The NLR and C3c partly mediated this association. We also identified associations of the aDII with risk of AMD (early-intermediate AMD, OR [95% CI]: 1.11 [1.03–1.19]; late AMD, OR [95% CI]: 1.24 [1.02–1.53]). The NLR partly mediated these associations. The aDII was not associated with OAG. Conclusions: A pro-inflammatory diet was associated with increased risks of cataract and AMD. Particularly the NLR, a marker of subclinical inflammation, appears to be implicated. These findings are relevant for patients with AMD and substantiate the current recommendations to strive for a healthy lifestyle to prevent blindness.</p

    Search for resonant states in 10C and 11C and their impact on the primordial 7Li abundance

    Get PDF
    The cosmological 7Li problem arises from the significant discrepancy of about a factor 3 between the predicted primordial 7Li abundance and the observed one. The main process for the production of 7Li during Big-Bang nucleosynthesis is the decay of 7Be. Many key nuclear reactions involved in the production and destruction of 7Be were investigated in attempt to explain the 7Li deficit but none of them led to successful conclusions. However, some authors suggested recently the possibility that the destruction of 7Be by 3He and 4He may reconcile the predictions and observations if missing resonant states in the compound nuclei 10C and 11C exist. Hence, a search of these missing resonant states in 10C and 11C was investigated at the Orsay Tandem-Alto facility through 10B(3He,t)10C and 11B(3He,t)11C charge-exchange reactions respectively. After a short overview of the cosmological 7Li problem from a nuclear physics point of view, a description of the Orsay experiment will be given as well as the obtained results and their impact on the 7Li problem

    Phenotype Sequencing: Identifying the Genes That Cause a Phenotype Directly from Pooled Sequencing of Independent Mutants

    Get PDF
    Random mutagenesis and phenotype screening provide a powerful method for dissecting microbial functions, but their results can be laborious to analyze experimentally. Each mutant strain may contain 50–100 random mutations, necessitating extensive functional experiments to determine which one causes the selected phenotype. To solve this problem, we propose a “Phenotype Sequencing” approach in which genes causing the phenotype can be identified directly from sequencing of multiple independent mutants. We developed a new computational analysis method showing that 1. causal genes can be identified with high probability from even a modest number of mutant genomes; 2. costs can be cut many-fold compared with a conventional genome sequencing approach via an optimized strategy of library-pooling (multiple strains per library) and tag-pooling (multiple tagged libraries per sequencing lane). We have performed extensive validation experiments on a set of E. coli mutants with increased isobutanol biofuel tolerance. We generated a range of sequencing experiments varying from 3 to 32 mutant strains, with pooling on 1 to 3 sequencing lanes. Our statistical analysis of these data (4099 mutations from 32 mutant genomes) successfully identified 3 genes (acrB, marC, acrA) that have been independently validated as causing this experimental phenotype. It must be emphasized that our approach reduces mutant sequencing costs enormously. Whereas a conventional genome sequencing experiment would have cost 7,200inreagentsalone,ourPhenotypeSequencingdesignyieldedthesameinformationvalueforonly7,200 in reagents alone, our Phenotype Sequencing design yielded the same information value for only 1200. In fact, our smallest experiments reliably identified acrB and marC at a cost of only 110–110–340

    Enabling Wave Power: Streamlining processes for progress

    Get PDF
    The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, on-going communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. In this way, the development of the future, commercial phase of offshore wave energy installations will benefit from the lessons learned from existing smaller-scale developments

    Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction

    Get PDF
    26Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26Al(n,p)26Mg and 26 Al(n,α)23Na reactions. We report on a single and coincidence measurement of the 27Al(p,p')27Al(p)26Mg and 27Al(p,p')27Al(α)23Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26Al+n threshold
    • 

    corecore