459 research outputs found
Ability of new durum wheat pure lines to meet yield stability and quality requirements in low input and organic systems
Low-input production schemes adopted in organic or conventional farms require crop varieties that combine good product quality and high yield stability under non optimal environmental conditions (Gooding et al., 1999). These traits are not yet found among the durum wheat genotypes available in France. Consequently the cultivation of this crop is hardly successful in stockless organic farms in southern France, which are characterised by very low nitrogen resources. Some hopes emerged with the identification of new durum wheat pure lines with a high grain protein content in breeding experiments conducted near Montpellier in 2001 and 2002. The aim of the present work was to confirm and elucidate the origin of the enhanced protein performance of these new lines through a field experiment with nitrogen resources ranging from very low to sub-optimal levels
GHRS and ORFEUS-II Observations of the Highly Ionized Interstellar Medium Toward ESO141-055
We present Goddard High Resolution Spectrograph and ORFEUS-II measurements of
Si IV, CIV, N V, and O VI absorption in the interstellar medium of the Galactic
disk and halo toward the nucleus of the Seyfert galaxy ESO141-055. The high
ionization absorption is strong, with line strengths consistent with the
spectral signature expected for hot (log T = 5-6) collisionally ionized gas in
either a ``Galactic fountain'' or an inhomogeneous medium containing a mixture
of conductive interfaces and turbulent mixing layers. The total O VI column
density of log N ~ 15 suggests that the scale height of O VI is large (>3 kpc)
in this direction. Comparison of the high ion column densities with
measurements for other sight lines indicates that the highly ionized gas
distribution is patchy. The amount of O VI perpendicular to the Galactic plane
varies by at least a factor of ~4 among the complete halo sight lines thus far
studied. In addition to the high ion absorption, lines of low ionization
species are also present in the spectra. With the possible exception of Ar I,
which may have a lower than expected abundance resulting from partial
photoionization of gas along the sight line, the absorption strengths are
typical of those expected for the warm, neutral interstellar medium. The sight
line intercepts a cold molecular cloud with log N(H2) ~ 19. The cloud has an
identifiable counterpart in IRAS 100-micron emission maps of this region of the
sky. We detect a Ly-alpha absorber associated with ESO141-055 at z = 0.03492.
This study presents an enticing glimpse into the interstellar and intergalactic
absorption patterns that will be observed at high spectral resolution by the
Far Ultraviolet Spectroscopic Explorer.Comment: 24 pages + 8 figures, uses aaspp4.sty. Accepted for publication in
Ap
Galectin-3 interacts with the cell surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells
The galactoside-binding protein galectin-3 is increasingly recognized as an important player in cancer development, progression, and metastasis via its interactions with various galactoside-terminated glycans. We have shown previously that circulating galectin-3, which is increased up to 30-fold in cancer patients, promotes blood-borne metastasis in an animal cancer model. This effect is partly attributable to the interaction of galectin-3 with unknown receptor(s) on vascular endothelial cells and causes endothelial secretion of several metastasis-promoting cytokines. Here we sought to identify the galectin-3-binding molecule(s) on the endothelial cell surface responsible for the galectin-3-mediated cytokine secretion. Using two different galectin-3 affinity purification processes, we extracted four cell membrane glycoproteins, CD146/melanoma cell adhesion molecule (MCAM)/MUC18, CD31/platelet endothelial cell adhesion molecule-1 (PECAM-1), CD144/VE-cadherin, and CD106/Endoglin, from vascular endothelial cells. CD146 was the major galectin-3-binding ligand and strongly co-localized with galectin-3 on endothelial cell surfaces treated with exogenous galectin-3. Moreover, galectin-3 bound to N-linked glycans on CD146 and induced CD146 dimerization and subsequent activation of AKT signaling. siRNA-mediated suppression of CD146 expression completely abolished the galectin-3-induced secretion of IL-6 and G-CSF cytokines from the endothelial cells. Thus, CD146/MCAM is the functional galectin-3-binding ligand on endothelial cell surfaces responsible for galectin-3-induced secretion of metastasis-promoting cytokines. We conclude that CD146/MCAM interactions with circulating galectin-3 may have an important influence on cancer progression and metastasis
From neighbourhood to 'globalhood'? Three propositions on the rapid rise of short-term rentals
This Commentary is an attempt to understand the recent, rapid rise of shortâterm property rentals in some of the world's most popular neighbourhoods, and what it means for communities, whether urban or rural. The literature to date has tackled the issue from a number of different perspectives, but there is no clear consensus on what the key issues are within this sector of the soâcalled âsharing economy.â Despite claims to the contrary, I argue that there is something new about this phenomenon, in relation to its growth, intensity and spatial concentration. I also argue that it represents a kind of double disruption, and that home sharing can usefully be conceptualised as neighbourhood sharing if we want to arrive at a better understanding of local reactions to it, and how we might best respond to it from a regulatory point of view
Spatial and temporal variability of biogenic isoprene emissions from a temperate estuary
[1] Isoprene is important for its atmospheric impacts and the ecophysiological benefits it affords to emitting organisms; however, isoprene emissions from marine systems remain vastly understudied compared to terrestrial systems. This study investigates for the first time drivers of isoprene production in a temperate estuary, and the role this production may play in enabling organisms to tolerate the inherently wide range of environmental conditions. Intertidal sediment cores as well as high and low tide water samples were collected from four sites along the Colne Estuary, UK, every six weeks over a year. Isoprene concentrations in the water were significantly higher at low than high tide, and decreased toward the mouth of the estuary; sediment production showed no spatial variability. Diel isoprene concentration increased with light availability and decreased with tidal height; nighttime production was 79% lower than daytime production. Seasonal isoprene production and water concentrations were highest for the warmest months, with production strongly correlated with light (r2 = 0.800) and temperature (r2 = 0.752). Intertidal microphytobenthic communities were found to be the primary source of isoprene, with tidal action acting as a concentrating factor for isoprene entering the water column. Using these data we estimated an annual production rate for this estuary of 681 ÎŒmol mâ2 yâ1. This value falls at the upper end of other marine estimates and highlights the potentially significant role of estuaries as isoprene sources. The control of estuarine isoprene production by environmental processes identified here further suggests that such emissions may be altered by future environmental change
Recommended from our members
Status of the ALS brightness upgrade
The Advanced Light Source (ALS) at Berkeley Lab while one of the earliest 3rdgeneration light sources remains one of the brightest sources for soft x-rays worldwide. Amultiyear upgrade of the ALS is currently under way, which includes new and replacementx-ray beamlines, a replacement of many of the original insertion devices and many upgradesto the accelerator. The accelerator upgrade that affects the ALS performance most directlyis the ALS brightness upgrade, which will reduce the horizontal emittance from 6.3 to 2.2nm (2.6 nm effective). This will result in a brightness increase by a factor of three forbendmagnet beamlines and at least a factor of two for insertion device beamlines. Magnetsfor this upgrade are currently in production and will be installed starting later thisyear. Copyright © 2012 by IEEE
The DIRTY Model. I. Monte Carlo Radiative Transfer Through Dust
We present the DIRTY radiative transfer model in this paper and a companion
paper. This model computes the polarized radiative transfer of photons from
arbitrary distributions of stars through arbitrary distributions of dust using
Monte Carlo techniques. The dust re-emission is done self-consistently with the
dust absorption and scattering and includes all three important emission paths:
equilibrium thermal emission, non-equilibrium thermal emission, and the
aromatic features emission. The algorithm used for the radiative transfer
allows for the efficient computation of the appearance of a model system as
seen from any viewing direction. We present a simple method for computing an
upper limit on the output quantity uncertainties for Monte Carlo radiative
transfer models which use the weighted photon approach.Comment: 8 pages, 3 figures, accepted to the Ap
Spatial representation of temporal information through spike timing dependent plasticity
We suggest a mechanism based on spike time dependent plasticity (STDP) of
synapses to store, retrieve and predict temporal sequences. The mechanism is
demonstrated in a model system of simplified integrate-and-fire type neurons
densely connected by STDP synapses. All synapses are modified according to the
so-called normal STDP rule observed in various real biological synapses. After
conditioning through repeated input of a limited number of of temporal
sequences the system is able to complete the temporal sequence upon receiving
the input of a fraction of them. This is an example of effective unsupervised
learning in an biologically realistic system. We investigate the dependence of
learning success on entrainment time, system size and presence of noise.
Possible applications include learning of motor sequences, recognition and
prediction of temporal sensory information in the visual as well as the
auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio
Recommended from our members
Status of the LBNL normal-conducting CW VHF electron photo-gun
The fabrication and installation at the Lawrence Berkeley National Laboratory of a high-brightness high-repetition rate photo-gun, based on a normal conducting 187 MHz (VHF) RF cavity operating in CW mode, is in an advanced phase. The cavity will generate an electric field at the cathode plane of ⌠20 MV/m to accelerate the electron bunches up to ⌠750 keV, with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. The gun vacuum system has been designed for achieving pressures compatible with the use of "delicate" high quantum efficiency semiconductor cathodes to generate up to a nC bunches at MHz repetition rate with present laser technology. Several photo-cathode/laser systems are under consideration, and in particular photo-cathodes based on K CsSb are being developed for the gun and have already achieved a QE of 8% at 532 nm wavelength, or close to 20% including the Schottky barrier lowering. The cathode will be operated by a ΌJ fiber laser in conjunction with refractive transverse beam shaping to create a flat top transverse profile, as well as a birefringent pulse stacker to create a flat top temporal profile. The present status and the plan for future activities are presented.
- âŠ