5,755 research outputs found
On the Wilson-Bappu relationship in the Mg II k line
An investigation is carried out on the Wilson-Bappu effect in the Mg II k
line at 2796.34 A. The work is based on a selection of 230 stars observed by
both the IUE and HIPPARCOS satellites, covering a wide range of spectral type
and absolute visual magnitudes. The Wilson-Bappu relationship here provided is
considered to represent an improvement over previous recent results for the
considerably larger data sample used as well as for a proper consideration of
the measurement errors. No evidence has been found for a possible dependence of
the WB effect on stellar metallicity and effective temperature.Comment: 8 pages, 8 figures Accepted for publication on A&
A study of the Mg II 2796.34 A emission line in late--type normal, and RS CVn stars
We carry out an analysis of the Mg II 2796.34 A emission line in RS CVn stars
and make a comparison with the normal stars studied in a previous paper (Paper
I). The sample of RS CVn stars consists of 34 objects with known HIPPARCOS
parallaxes and observed at high resolution with IUE. We confirm that RS CVn
stars tend to possess wider Mg II lines than normal stars having the same
absolute visual magnitude. However, we could not find any correlation between
the logarithmic line width log Wo and the absolute visual magnitude Mv (the
Wilson--Bappu relationship) for these active stars, contrary to the case of
normal stars addressed in Paper I. On the contrary, we find that a strong
correlation exists in the (Mv, log L) plane (L is the absolute flux in the
line). In this plane, normal and RS CVn stars are distributed along two nearly
parallel straight lines with RS CVn stars being systematically brighter by
about 1 dex. Such a diagram provides an interesting tool to discriminate active
from normal stars. We finally analyse the distribution of RS CVn and of normal
stars in the (log L, log Wo) plane, and find a strong linear correlation for
normal stars, which can be used for distance determinations.Comment: 10 pages, 7 figures, latex, to be published in A&
Are geometric morphometric analyses replicable? Evaluating landmark measurement error and its impact on extant and fossil Microtus classification.
Geometric morphometric analyses are frequently employed to quantify biological shape and shape variation. Despite the popularity of this technique, quantification of measurement error in geometric morphometric datasets and its impact on statistical results is seldom assessed in the literature. Here, we evaluate error on 2D landmark coordinate configurations of the lower first molar of five North American Microtus (vole) species. We acquired data from the same specimens several times to quantify error from four data acquisition sources: specimen presentation, imaging devices, interobserver variation, and intraobserver variation. We then evaluated the impact of those errors on linear discriminant analysis-based classifications of the five species using recent specimens of known species affinity and fossil specimens of unknown species affinity. Results indicate that data acquisition error can be substantial, sometimes explaining >30% of the total variation among datasets. Comparisons of datasets digitized by different individuals exhibit the greatest discrepancies in landmark precision, and comparison of datasets photographed from different presentation angles yields the greatest discrepancies in species classification results. All error sources impact statistical classification to some extent. For example, no two landmark dataset replicates exhibit the same predicted group memberships of recent or fossil specimens. Our findings emphasize the need to mitigate error as much as possible during geometric morphometric data collection. Though the impact of measurement error on statistical fidelity is likely analysis-specific, we recommend that all geometric morphometric studies standardize specimen imaging equipment, specimen presentations (if analyses are 2D), and landmark digitizers to reduce error and subsequent analytical misinterpretations
Kalman Filter Track Fits and Track Breakpoint Analysis
We give an overview of track fitting using the Kalman filter method in the
NOMAD detector at CERN, and emphasize how the wealth of by-product information
can be used to analyze track breakpoints (discontinuities in track parameters
caused by scattering, decay, etc.). After reviewing how this information has
been previously exploited by others, we describe extensions which add power to
breakpoint detection and characterization. We show how complete fits to the
entire track, with breakpoint parameters added, can be easily obtained from the
information from unbroken fits. Tests inspired by the Fisher F-test can then be
used to judge breakpoints. Signed quantities (such as change in momentum at the
breakpoint) can supplement unsigned quantities such as the various chisquares.
We illustrate the method with electrons from real data, and with Monte Carlo
simulations of pion decays.Comment: 27 pages including 10 figures. To appear in NI
Internal rotation of red giants by asteroseismology
We present an asteroseismic approach to study the dynamics of the stellar
interior in red-giant stars by asteroseismic inversion of the splittings
induced by the stellar rotation on the oscillation frequencies. We show
preliminary results obtained for the red giant KIC4448777 observed by the space
mission Kepler.Comment: 3 pages, 4 figures, the 40th Liege International Astrophysical
Colloquium Liac40, 'Ageing low mass stars: from red giants to white dwarfs',
to be published on EPJ Web of Conference
Internal rotation of the red-giant star KIC 4448777 by means of asteroseismic inversion
In this paper we study the dynamics of the stellar interior of the early
red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the
dipole mixed modes obtained from {\it Kepler} observations. In order to
overcome the complexity of the oscillation pattern typical of red-giant stars,
we present a procedure which involves a combination of different methods to
extract the rotational splittings from the power spectrum. We find not only
that the core rotates faster than the surface, confirming previous inversion
results generated for other red giants (Deheuvels et al. 2012,2014), but we
also estimate the variation of the angular velocity within the helium core with
a spatial resolution of and verify the hypothesis of a sharp
discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The
results show that the entire core rotates rigidly with an angular velocity of
about ~nHz and provide evidence for an
angular velocity decrease through a region between the helium core and part of
the hydrogen burning shell; however we do not succeed to characterize the
rotational slope, due to the intrinsic limits of the applied techniques. The
angular velocity, from the edge of the core and through the hydrogen burning
shell, appears to decrease with increasing distance from the center, reaching
an average value in the convective envelope of
~nHz. Hence, the core in KIC~4448777 is
rotating from a minimum of 8 to a maximum of 17 times faster than the envelope.
We conclude that a set of data which includes only dipolar modes is sufficient
to infer quite accurately the rotation of a red giant not only in the dense
core but also, with a lower level of confidence, in part of the radiative
region and in the convective envelope.Comment: accepted for publication on Ap
Dual-readout Calorimetry
The RD52 Project at CERN is a pure instrumentation experiment whose goal is
to understand the fundamental limitations to hadronic energy resolution, and
other aspects of energy measurement, in high energy calorimeters. We have found
that dual-readout calorimetry provides heretofore unprecedented information
event-by-event for energy resolution, linearity of response, ease and
robustness of calibration, fidelity of data, and particle identification,
including energy lost to binding energy in nuclear break-up. We believe that
hadronic energy resolutions of {\sigma}/E 1 - 2% are within reach for
dual-readout calorimeters, enabling for the first time comparable measurement
preci- sions on electrons, photons, muons, and quarks (jets). We briefly
describe our current progress and near-term future plans. Complete information
on all aspects of our work is available at the RD52 website
http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape
Production and performance of LHCb triple-GEM detectors equipped with the dedicated CARDIAC-GEM front-end electronics
The production of the triple-GEM detectors for the innermost region of the first muon station of the LHCb experiment has started in February 2006, and is foreseen to be completed by the end of July. The final design of the detector and the construction procedure and tools, as well as the quality controls are defined. The performances of each detector, composed by two triple-GEM chambers equipped with dedicated CARDIAC-GEM front-end electronics, are studied with a cosmic ray telescope. The cosmic ray telescope has been set up including all the final off-detector components
- âŠ