61 research outputs found

    Multidimensional simple waves in fully relativistic fluids

    Full text link
    A special version of multi--dimensional simple waves given in [G. Boillat, {\it J. Math. Phys.} {\bf 11}, 1482-3 (1970)] and [G.M. Webb, R. Ratkiewicz, M. Brio and G.P. Zank, {\it J. Plasma Phys.} {\bf 59}, 417-460 (1998)] is employed for fully relativistic fluid and plasma flows. Three essential modes: vortex, entropy and sound modes are derived where each of them is different from its nonrelativistic analogue. Vortex and entropy modes are formally solved in both the laboratory frame and the wave frame (co-moving with the wave front) while the sound mode is formally solved only in the wave frame at ultra-relativistic temperatures. In addition, the surface which is the boundary between the permitted and forbidden regions of the solution is introduced and determined. Finally a symmetry analysis is performed for the vortex mode equation up to both point and contact transformations. Fundamental invariants and a form of general solutions of point transformations along with some specific examples are also derived.Comment: 21 page

    Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings

    Get PDF
    Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol– gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L−1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serumproteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in proteincontaining solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical Chemistry of PAS for XPS surface analyses

    Riemann Invariants and Rank-k Solutions of Hyperbolic Systems

    Get PDF
    In this paper we employ a "direct method" in order to obtain rank-k solutions of any hyperbolic system of first order quasilinear differential equations in many dimensions. We discuss in detail the necessary and sufficient conditions for existence of these type of solutions written in terms of Riemann invariants. The most important characteristic of this approach is the introduction of specific first order side conditions consistent with the original system of PDEs, leading to a generalization of the Riemann invariant method of solving multi-dimensional systems of PDEs. We have demonstrated the usefulness of our approach through several examples of hydrodynamic type systems; new classes of solutions have been obtained in a closed form.Comment: 30 page

    The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type

    Get PDF
    We obtain the necessary and sufficient conditions for a two-component (2+1)-dimensional system of hydrodynamic type to possess infinitely many hydrodynamic reductions. These conditions are in involution, implying that the systems in question are locally parametrized by 15 arbitrary constants. It is proved that all such systems possess three conservation laws of hydrodynamic type and, therefore, are symmetrizable in Godunov's sense. Moreover, all such systems are proved to possess a scalar pseudopotential which plays the role of the `dispersionless Lax pair'. We demonstrate that the class of two-component systems possessing a scalar pseudopotential is in fact identical with the class of systems possessing infinitely many hydrodynamic reductions, thus establishing the equivalence of the two possible definitions of the integrability. Explicit linearly degenerate examples are constructed.Comment: 15 page

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    High‐throughput sequencing approach in analysis of microbial communities colonizing natural gas pipelines

    Get PDF
    This study provides a deep modern insight into the phylogenetic diversity among bacterial consortia found in working and nonworking high‐methane natural gas pipelines located in Poland. The working pipeline was characterized by lower biodiversity (140–154 bacterial genera from 22 to 23 classes, depending on the source of the debris) in comparison to the off‐gas pipeline (169 bacterial genera from 23 classes). The sediment recovered from the working pipeline contained mostly DNA identified as belonging to the phylum Firmicutes (66.4%–45.9% operational taxonomic units [OTUs]), predominantly Bacillus (41.4%–31.1% OTUs) followed by Lysinibacillus (2.6%–1.5% OTUs) and Clostridium (2.4%–1.8% OTUs). In the nonworking pipeline, Proteobacteria (46.8% OTUs) and Cyanobacteria (27.8% OTUs) were dominant. Over 30% of the Proteobacteria sequences showed homologies to Gammaproteobacteria, with Pseudomonas (7.1%), Enhydrobacter (2.1%), Stenotrophomonas (0.5%), and Haempohilus (0.4%) among the others. Differences were noted in terms of the chemical compositions of deposits originating from the working and nonworking gas pipelines. The deposits from the nonworking gas pipeline contained iron, as well as carbon (42.58%), sulphur (15.27%), and oxygen (15.32%). This composition can be linked to both the quantity and type of the resident microorganisms. The presence of a considerable amount of silicon (17.42%), and of aluminum, potassium, calcium, and magnesium at detectable levels, may likewise affect the metabolic activity of the resident consortia in the working gas pipeline. All the analyzed sediments included both bacteria known for causing and intensifying corrosion (e.g., Pseudomonas, Desulfovibrio, Shewanella, Serratia) and bacteria that can protect the surface of pipelines against deterioration (e.g., Bacillus). Biocorrosion is not related to a single mechanism or one species of microorganism, but results from the multidirectional activity of multiple microbial communities. The analysis presented here of the state of the microbiome in a gas pipeline during the real gas transport is a particularly valuable element of this work

    Development of improved nickel catalysts for sorption enhanced CO2 methanation

    Get PDF
    Sorption enhanced CO2 methanation is a complex process in which the key challenge lies in the combined optimization of the catalyst activity and water adsorption properties of the zeolite support. In the present work, improved nickel-based catalysts with an enhanced water uptake capacity were designed and catalytically investigated. Two different zeolite frameworks were considered as supports for nanostructured Ni, and studied with defined operation parameters. 5Ni/13X shows significantly increased, nearly three-fold higher, operation time in the sorption enhanced CO2 methanation mode compared to the reference 5Ni/5A, likely due to its higher water sorption capacity. Both catalysts yield comparable CO2 conversion in conventional CO2 methanation (without water uptake). Regeneration of the catalysts performance is possible via a drying step between methanation cycles under both reducing and oxidizing atmospheres; however, operation time of 5Ni/13X increases further after drying under air

    Childhood sarcoidosis: A rare but fascinating disorder

    Get PDF
    Childhood sarcoidosis is a rare multisystemic granulomatous disorder of unknown etiology. In the pediatric series reported from the southeastern United States, sarcoidosis had a higher incidence among African Americans. Most reported childhood cases have occurred in patients aged 13–15 years. Macrophages bearing an increased expression of major histocompatibility class (MHC) II molecules most likely initiate the inflammatory response of sarcoidosis by presenting an unidentified antigen to CD4+ Th (helper-inducer) lymphocytes. A persistent, poorly degradable antigen driven cell-mediated immune response leads to a cytokine cascade, to granuloma formation, and eventually to fibrosis. Frequently observed immunologic features include depression of cutaneous delayed-type hypersensitivity and a heightened helper T cell type 1 (Th1) immune response at sites of disease. Circulating immune complexes, along with signs of B cell hyperactivity, may also be found. The clinical presentation can vary greatly depending upon the organs involved and age of the patient. Two distinct forms of sarcoidosis exist in children. Older children usually present with a multisystem disease similar to the adult manifestations, with frequent hilar lymphadenopathy and pulmonary infiltrations. Early-onset sarcoidosis is a unique form of the disease characterized by the triad of rash, uveitis, and arthritis in children presenting before four years of age. The diagnosis of sarcoidosis is confirmed by demonstrating a typical noncaseating granuloma on a biopsy specimen. Other granulmatous diseases should be reasonably excluded. The current therapy of choice for sarcoidosis in children with multisystem involvement is oral corticosteroids. Methotrexate given orally in low doses has been effective, safe and steroid sparing in some patients. Alternative immunosuppressive agents, such as azathioprine, cyclophosphamide, chlorambucil, and cyclosporine, have been tried in adult cases of sarcoidosis with questionable efficacy. The high toxicity profile of these agents, including an increased risk of lymphoproliferative disorders and carcinomas, has limited their use to patients with severe disease refractory to other agents. Successful steroid sparing treatment with mycophenolate mofetil was described in an adolescent with renal-limited sarcoidosis complicated by renal failure. Novel treatment strategies for sarcoidosis have been developed including the use of TNF-alpha inhibitors, such as infliximab. The long-term course and prognosis is not well established in childhood sarcoidosis, but it appears to be poorer in early-onset disease
    corecore