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ABSTRACT

Sorption enhanced CO, methanation is a complex process in which the key challenge lies
in the combined optimization of the catalyst activity and water adsorption properties of
the zeolite support. In the present work, improved nickel-based catalysts with an
enhanced water uptake capacity were designed and catalytically investigated. Two
different zeolite frameworks were considered as supports for nanostructured Ni, and
studied with defined operation parameters. 5Ni/13X shows significantly increased, nearly
three-fold higher, operation time in the sorption enhanced CO, methanation mode
compared to the reference 5Ni/5A, likely due to its higher water sorption capacity. Both
catalysts yield comparable CO, conversion in conventional CO, methanation (without
water uptake). Regeneration of the catalysts performance is possible via a drying step
between methanation cycles under both reducing and oxidizing atmospheres; however,
operation time of 5Ni/13X increases further after drying under air.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

from renewable excess energy [1]. Conventional methanation
processes involve nanostructured active metals on various
supports (e.g. SiO, [2], ZrO, [3], Al,05 [4], carbon nanotubes [5]).

Methane production from waste carbon dioxide with renew-
able hydrogen can become of crucial significance for future
energy turnaround strategy in countries like Switzerland or
Germany, because it contributes to the reduction of CO,
emissions. Such CO, emissions can be reused and even valo-
rized by its chemical conversion with hydrogen produced

* Corresponding author.
E-mail address: renaud.delmelle@zhaw.ch (R. Delmelle).
http://dx.doi.org/10.1016/j.ijhydene.2016.09.045

Despite the existence of other elements at the research level,
Ni remains the best choice for the active metal when consid-
ering activity, selectivity and price [6]. The efficiency of CO,
methanation, also known as Sabatier reaction (1), is increased
by the application of Le Chatelier's principle, via the in-situ
removal of water from the reaction sites, causing an

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
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equilibrium shift: the so called sorption enhanced methana-
tion process [7,8] (see Fig. 1). Additionally, high selectivity to
CH, is desired, and therefore uptake of water already at the
reaction centre is optimal.

CO, + 4H, = CH, + 2H,0, AH® = —165 kJ/mol. 1)

Zeolites are materials commonly used as adsorber material
in industrial processes such as dehydration of ethanol and
flue gas cleaning of exhaust air, but can also be used as cata-
lyst support [9,10]. Zeolite LTX (13X) provides 9 A pores, which
allow an easy diffusion of molecules inside the zeolite chan-
nels, and high water sorption capacity (26 gwater/KEzeolite at
21 °C and 53% relative humidity (RH)) [11,12]. Zeolite LTA (5A)
was previously tested by the authors [7,13,14] and proved itself
efficient in the sorption enhanced CO, methanation, due to its
relatively good water uptake capability (23 gwater/Kzeotite at
21 °C and 53% RH) and adequate pore size (5 A), that allows
accessibility of the molecules involved in the Sabatier reaction
to the internal zeolite surfaces [7,14]. It is essential to under-
stand how the properties of the zeolite support affect the
catalytic reaction in order to design catalysts with an
improved yield, extended operation time or fast kinetics for
the sorption enhanced CO, methanation. For example, the
role played by the heat of water sorption by the zeolite is
omitted in Eq. (1). As water sorption is vital in this application,
13X was subjected as support for sorption catalyst and
compared to the 5A reference.

Zeolites have limited water sorption capacity; conse-
quently a regeneration step, i.e. drying of the catalyst bed with
a dry gas is required, preferably at the same temperature level

Fig. 1 — Molecular structure model of sorption enhanced
CO, methanation over a nickel catalyst on zeolite. Red,
blue, black and green spheres represent hydrogen, oxygen,
carbon and nickel atoms, respectively. (For interpretation
of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

to avoid time consuming cooling and heating periods without
operation [15]. Proper choice of the drying gas is a strategic key
parameter: reducing environment yields higher reduction
degree of the metallic active phase, which might result in
higher catalytic activity [16]; however, a higher oxygen partial
pressure obtained by an air stream allows cleaning of the
catalyst surface from poisons present in CO, sources [17,18] or
from coke, an intermediate species of the methanation reac-
tion [19]. We elucidate the influence of the atmosphere used
for the regeneration of the water saturated zeolite and of the
zeolite support on the performance of nickel catalysts for
sorption enhanced CO, methanation.

Experimental

Nickel catalysts were supported on commercial zeolites LTA
and LTX (beads, 2 mm, Zeochem) by a wet impregnation
process from a solution of nickel nitrate hexahydrate
(Ni(NO3),-6H,0, Sigma Aldrich) in water. Zeolites were dried at
140 °C for 12 h before synthesis. The mixture of zeolite beads
and Ni solution was stirred for 1 h at room temperature (RT)
and subsequently the solvent was removed at 70 °C in a rotary
evaporator. The samples were dried again for additional
12 h at 140 °C and then calcined at 500 °C in a muffle for4 h to
remove residual nitrate salts. Inductively Coupled Plasma
Optical Emission Spectrometry (ICP—OES) measurements of
the catalysts revealed that all samples contain about 4 wt.%
nickel before calcination and 5 wt.% nickel after calcination, in
agreement with the values calculated for the Ni supported
zeolite with and without adsorbed solvent, respectively. The
resulting samples are named 5Ni/5A and 5Ni/13X if prepared
on LTA and LTX, respectively.

Catalytic screening of material systems for CO, methana-
tion was performed in a tubular fixed-bed reactor with volume
of 340 mL and an internal diameter of 32.8 mm coupled to a
mass spectrometer (MS), model Pfeiffer OmniStar GSD 320 O1.
The reactor contains a catalyst mass of 250 g. The reactions
were carried out under atmospheric pressure. Samples were
initially reduced for 1 h at 500 °C in 800 mL/min of a 1:1 molar
ratio of Hy/Ar before reaction. After cooling to 300 °C under
this reducing atmosphere, CO, methanation was performed
with a GHSV (gas hourly space velocity = reactant gas flow
rate per reactor volume) of 92 h™! and reactant feed compo-
sition of CO, and H, with total flow of 520 mL/min and molar
ratio 1:4.05 (5% excess of hydrogen to avoid coking). Argon was
added at the reactor outlet as tracer prior to the MS for
normalization of the MS signal. The activity and stability of
the catalysts were tested at a reactor temperature of 300 °C
according to the following sequence: (i) initially, the samples
were subjected to CO, methanation up to the saturation of the
zeolite support with water, identified by the breakthrough of
water; (ii) the samples were then dried for 20 min with a flow
of 800 mL/min of air or 1:1 molar ratio of H,/Ar (zeolite drying
time was prolonged to 40 min at specific tests to determine the
influence of drying time in the subsequent test under sorption
enhanced CO, methanation mode); (iii) the whole cycle pro-
cedure was then repeated six times. The amounts of H,, CO,
CO, and CH, were recorded by the MS as function of time. The
flow rate was controlled by mass flow controllers (Bronkhorst,
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FLOW-BUS). The outlet concentration was derived from a
calibration line, assuming that the signal for CO, in the
absence of the gas corresponded to full conversion, and that
the signal without conversion was the flow rate set at the
inlet. Conversion of CO, (Xco,) is defined as

®CO2,out

¢Coz.in - ¢Coz,uut 1
7 @COyp’

®COyin

}(co2 = (2)
where #CO,;, and #CO,,,; were the molar flow rates of CO, at
the inlet and outlet of the reactor, respectively.

Metal particles were identified by scanning electron mi-
croscopy (SEM) and images were acquired with a FIB-SEM
Helios Nanolab 600i (FEI). Good contrast settings were ach-
ieved with the so-called through-the-lens detector (TLD) at
2—-3 kV accelerating voltage and low beam current (<100 pA).
The phase content and crystal structure of powder specimens
were analysed by X-ray diffraction (XRD) on a Bruker D8
Advance. Mean nickel crystallite sizes were determined by
averaging the crystallite sizes calculated from the Ni (111), Ni
(200) and Ni (220) reflections by the Scherrer equation. Peak
broadening was determined by Rietveld refinement in the
Topas software. Temperature programmed reduction experi-
ments (TPR) were performed on a Quantachrome Autosorb iQ
with an internal thermal conductivity detector (TCD). The
samples were preoxidized in a flow of synthetic air at 500 °C
for 2 h. Adsorbed oxygen was purged from the samples with
N, at 500 °C for 30 min. After cooling down the samples in N,-
atmosphere the TPR was performed with a temperature
ramping of 5 K/min up to 850 °C in a Flow (V(gas) = 25 mL/min)
of 5% H, in Nj.

Results and discussion

Fig. 2a and b shows representative SEM images of 5Ni/13X
after reduction. The spherical spots correspond to nickel
nanoparticles, while the typical fibrous and flake like large
grey structures represent the zeolite 13X support. Nickel
nanoparticles are homogeneously distributed throughout the
zeolite support. Although a broad Ni particle size distribution
(PSD) was observed, most particles are in the range 20—30 nm.
As shown on Fig. 2c, XRD analysis of the reduced zeolites re-
veals the existence of mixed zeolite phases and metallic
nickel. This is consistent to the different zeolite morphology
which can be seen in the SEM images. Rietveld refinement was
performed on the main Ni reflections from high-resolution
acquisitions. Such calculations resulted in an average crys-
tallite size of 33 + 4 nm for 5Ni/13X and 22 + 5 nm for 5Ni/5A,
respectively, which is compatible with the observations from
SEM analysis.

In order to understand the samples behaviour during
reduction, TPR experiments were conducted with hydrogen as
the reducing gas. Fig. 3 shows H,-TPR experiments performed
on both catalyst systems. On the one hand, Ni particles on
zeolite 13X display a wide range of reduction temperatures,
with several peaks indicative for oxide regions of different
stabilities. On the other hand, Ni particles on zeolite 5A exhibit
a very different TPR profile: most of the nickel oxide is reduced
above 500 °C, as opposed to 5Ni/13X, which is already active at
300 °C. This result has important potential consequences on

or (c) zeolite 13X i

7
€ 5] :
8 44 45
=
=
2 10 1
g
E Ni(200)
/ Ni(220) i (311) 1

1 n 1 2 1 L 1 "
20 40 60 80 100
20 [degree]

Fig. 2 — (a) and (b) Representative SEM images of 5Ni/13X
after reduction. (c) XRD diffractogram of the same sample.
Main reflections from Ni are shown, the other peaks
correspond to zeolite 13X.

the choice of the catalyst/support couple, depending on the
temperature of the application considered. In the case of
sorption enhanced methanation, we showed that 300 °C is the
optimal operation temperature [13]. If the catalyst regenera-
tion can take place at this temperature, the CO, methanation
efficiency according to Eq. (1) is increased. This is of great
advantage and in favour of 13X as support.

Fig. 4a shows the alternated cyclic CO, methanation and
drying treatment applied to the catalysts at an operation
temperature of 300 °C in the reactor. Cyclic tests were initiated
with CO, methanation after pre-reduction of the catalysts at
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Fig. 3 — H,-TPR profiles of 5Ni/13X and 5Ni/5A.

500 °C. The measured normalized time of operation (NTO)
under sorption enhanced CO, methanation mode of 5Ni/5A
and 5Ni/13X catalysts is given as a function of the number of
cycles in Fig. 4b. The NTO is calculated as

(a)

F
NTO = t-o,

3)
where t is the time of operation under sorption enhanced CO,
methanation mode, F is the flow rate and V is the reactor
volume. The catalysts are subjected to six cycles, each con-
sisting of a reaction and a regeneration step to determine
catalyst stability. The local temperature in the reactor rises
about 30 °C during the catalytic tests due to the exothermicity
of both, the CO, methanation and the water adsorption on
zeolites [8]. This is in accordance to our previous results [7,13].
Both, 5Ni/5A and 5Ni/13X yielded full CO, conversion and
reached a dry product gas flow with 100% selectivity to CH,.
However, the 5Ni/13X composite even allowed a substantial
extension of the operation time for the CO, methanation in
the sorption enhanced mode if compared to 5Ni/5A.
Additionally, an intermediate drying step under air led to a
further 26% longer NTO in the sorption enhanced methana-
tion mode for 5Ni/13X, in comparison to a drying step under
reducing environment. In contrast, for 5Ni/5A the NTO is
almost identical for reducing and oxidizing drying conditions.
It has to be mentioned, that both catalysts showed a sub-
stantially extended NTO in the very first cycle: 121% and 234%
longer than for the average NTO in the following CO,

Methanation cycles

500°C for1h

H v v v v v v
2 1 2 3 4 5 6 T=300°C
1 | 1 1 1 1
1 1 | 1 1 1
RT —
Drying under H, Drying under air
(b)
20 ®
154 \\
. \\
S 104 N 5Ni/13X
'9 E \\ \\ /. _____ . _____ .
e :“.\_,/ \\ \ ”/’
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Fig. 4 — (a) Treatment related to alternated cyclic CO, methanation and drying treatment applied to the catalysts at 300 °C
reactor temperature and (b) NTO of sorption enhanced CO, methanation during cyclic tests with 5Ni/5A and 5Ni/13X (the

black, blue and grey dashed lines are only a guide to the eye). Between cycles 5 and 6, the drying step was carried out for
twice as long, i.e. 40 min. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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methanation tests in sorption enhanced mode for 5Ni/13X and
SNi/5A, respectively. As shown in Fig. 3, this is likely due to the
pre-treatment under H,/Ar at 500 °C, causing a higher reduced
nickel phase (c.f. Ref. [20]). That the effect of reducing the
catalyst at 500 °C is twice more pronounced for 5Ni/5A can be
explained by the TPR data of Fig. 3, indeed showing that
reducing 5Ni/5A at 300 °C will be significantly less effective
than 5Ni/13X. However, in fair agreement with the data for the
following cycles the activity of the catalysts can be described
as stable. 5Ni/5A has an average NTO of 3.5 while 5Ni/13X
showed a NTO of 9 when dried under oxidizing environment,
a value nearly three-fold higher than for 5Ni/5A. The
improved performance of 5Ni/13X in terms of operation time
under sorption enhanced conditions can be explained by its
higher water sorption capacity, especially when considering
the high temperature of the sorption enhanced methanation
process. Indeed, although the room temperature water sorp-
tion capacity of zeolite 13X is only 13% higher than S5A (see
introduction), this difference increases with temperature.
Extrapolating the model from Wang and LeVan [21] to 300 °C
brings it to 135% (2.9 gwater/Kgzeolite fOr SA and 6.7 guwater
kg, eotite for 13X). Although these values are small compared to
the room temperature sorption capacities, they turn out to
have considerable effect on the methanation performance.

The restoration of the catalytic properties reached after
drying is due to the regeneration of the zeolite support,
namely the renewal of its water sorption capacity. A straight
correlation between nickel dispersion and catalyst perfor-
mance is observed for CO, methanation according to litera-
ture [22]. Re-dispersion of the nickel metallic phase can take
place due to metal-support interaction during drying under
the influence of both oxidizing and reducing atmospheres
[23,24], which might also result in the observed stability of
these samples during the cycling between the sorption
enhanced methanation mode and the drying mode.

5Ni/5A could be dried under H,/Ar or air yielding approxi-
mately the same NTO for sorption enhanced CO, methana-
tion. As previously mentioned, drying 5Ni/13X under air
improves the NTO compared to a drying cycle under H,/Ar.
Oxygen and nitrogen molecules have sizes and weights that
are comparable to the water molecule (i.e. on the same order
of magnitude, as opposed to hydrogen). Collisions between
these gas species are energetically more effective. Therefore,
it is reasonable to assume that hydrogen does not carry out
the water from the zeolite beads with the same efficiency as
air. Additionally, hydrogen can be chemisorbed in nickel
impregnated zeolites [14]. The difference in drying with air or
hydrogen is pronounced only for 5Ni/13X probably due to the
bigger pores of this support, which allows easier diffusion and
release of the air and water molecules. In the drying step, ki-
netic diameters of the molecules involved reach 3.6 A for ni-
trogen and 3.5 A for oxygen, respectively [25]. Although this is
small enough to enter the 5 A pores of the 5A structure, it is
clear that the 9 A pores of the 13X structure allow for a faster
transport of these molecules. However, it should be noted that
the catalyst could be regenerated after drying under both
conditions, giving the same NTO as in the previous cycle.
Under oxidative conditions cleaning of the catalyst surface by
oxidation of catalyst poisons would be feasible [26], which is a
desired asset for real applications: on one hand there is coke

deposition, which is a common source of deactivation [27]. On
the other hand CO, sources like biogas plants or cement
clinker plants normally contain sulphur compounds, which
can even lead to an irreversible catalyst poisoning [17].

It is worth to mention here, that no change in performance
is observed when the time for the drying procedure is doubled
(between cycles 5 and 6). Under the conditions applied in this
work, maximum water sorption capacity of the zeolite is
achieved already after 20 min under dry flow; longer drying
periods do not cause any improvement.

Over both samples 100% selectivity to CH, is obtained
during sorption enhanced CO, methanation (MS profile not
shown, [7,13,14]). The authors observed that the selectivity for
CH, is greatly enhanced if the pore size of the support is equal
orlarger than 5 A: the pores of the 5A zeolites are large enough
to accept the reactants and release the products [14]. However,
as mentioned above, desorption from the catalyst might be
hindered by pore diffusion limitations. The faster transport of
air and water through the 5Ni/13X structure is crucial for the
drying process.

Fig. 5 shows the CO, conversion rate of 5Ni/5A and 5Ni/13X
catalysts during conventional CO, methanation, i.e. after
saturation of the zeolite with water is reached and the sorp-
tion enhanced mode of the zeolite is eliminated. The average
conversion of CO, at 300 °C is 78.8% for both, 5Ni/5A and 5Ni/
13X catalysts. Zeolite 13X has a higher Si/Al ratio and there-
fore lower acidity than the zeolite S5A. The acidity of the sup-
port can be an important parameter, which affects the
catalytic performance and product selectivity of a reaction
[28]. However, the CO, conversion levels are rather similar for
the different supports when the water sorption capacity of the
support is removed, pointing to a sole performance depen-
dence on the metallic nickel phase. Andersson et al. [19]
proved by density functional theory (DFT) calculations that
the methanation reaction is structure sensitive and therefore
depends on the catalytic active metal particle shape and size.

100 T T T T T T T T T T T

0 I . 1 . 1 A I : I . 1
1 2 3 4 5 6

Number of cycles

Fig. 5 — GO, conversion under conventional CO,
methanation mode over 5Ni/5A (blue) and 5Ni/13X (black)
at 300 °C. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version
of this article.)
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Independent of the zeolite support, the good stability of the
catalyst performance shown in Fig. 5 is an encouraging sign for
potential applications. Regarding such applications, the authors
previously showed that the temperature of 300 °C is a good
compromise between water sorption capacity and catalytic ac-
tivity [13]. More generally, the technical requirements of a given
application should be put into perspective with this tempera-
ture optimum, which may change from one material to another.

Conclusions

Nickel catalysts supported on zeolites yield pure CH, during
CO, methanation, up to the saturation of the zeolite support
with water. This is the so-called sorption enhanced CO,
methanation mode. The performance of the catalysts can
be restored after drying under reducing or oxidizing
environment.

When pre-dried under oxidizing atmosphere, 5Ni/13X
catalyst showed a substantially improved performance and
can be operated for nearly threefold longer time than 5Ni/5A
in the sorption enhanced CO, methanation mode. The larger
pores of the 5Ni/13X structure allow for better air and water
transport, and therefore more efficient catalyst regeneration
in oxidizing conditions. The authors are especially interested
in using an oxidizing environment for the regeneration of the
catalysts because such condition is particularly needed in real
applications to counteract catalyst deactivation due to
poisoning by coke and/or sulphur.
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