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Abstract

In this paper we employ a ”direct method” in order to obtain rank-k solu-
tions of any hyperbolic system of first order quasilinear differential equations
in many dimensions. We discuss in detail the necessary and sufficient con-
ditions for existence of these type of solutions written in terms of Riemann
invariants. The most important characteristic of this approach is the introduc-
tion of specific first order side conditions consistent with the original system of
PDEs, leading to a generalization of the Riemann invariant method of solving
multi-dimensional systems of PDEs. We have demonstrated the usefulness of
our approach through several examples of hydrodynamic type systems; new
classes of solutions have been obtained in a closed form.

Résumé

Dans cet article, nous employons une ”méthode directe” pour obtenir des so-
lutions de rang k pour tout système hyperbolique d’équations différentielles
quasilinéaires du premier ordre en plusieurs dimensions. Nous discuterons en
détail les conditions nécessaires et suffisantes pour l’existence de ces types de
solutions écrites en termes d’invariants de Riemann. La caractéristique la plus
importante de cette approche est l’introduction de contraintes différentielles
de premier ordre supplémentaires et compatibles avec le système d’EDPs orig-
inal, ce qui conduit à une généra-lisation de la méthode des invariants de Rie-
mann pour la résolution de systèmes d’EDPs en plusieurs dimensions. Nous
avons démontré l’utilité de cette approche par plusieurs exemples de systèmes
de type hydrodynamique et des nouvelles classes de solutions sont obtenues.
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1 Introduction

This work has been motivated by a search for new ways of constructing multiple
Riemann waves for nonlinear hyperbolic systems. Riemann waves and their superpo-
sitions were first studied two centuries ago in connection with differential equations
describing a compressible isothermal gas flow, by D. Poisson [19] and later by B.
Riemann [20]. Since then many different approaches to this topic have been devel-
oped by various authors with the purpose of constructing solutions to more general
hydrodynamic-type systems of PDEs. For a classical presentation we refer reader
to a treatise by R. Courant and D. Hilbert [2] and for a modern approach to the
subject, see e.g. [9, 18, 21] and references therein. A review of most recent develop-
ments in this area can be found in [3, 5, 13].

The task of constructing multiple Riemann waves has been approached so far
through the method of characteristics. It relies on treating Riemann invariants as
new independent variables (which remain constant along appropriate characteristic
curves of the basic system). This leads to the reduction of the dimensionality of
the initial system which has to be subjected however to the additional differential
constraints, limiting the scope of resulting solutions.

We propose here a new (though a very natural) way of looking at solutions ex-
pressible in terms of Riemann invariants, namely from the point of view of their
group invariance properties. We show that this approach (initiated in [4, 12]) leads
to the larger classes of solutions, extending beyond Riemann multiple waves.

We are looking for the rank-k solutions of first order quasilinear hyperbolic system
of PDEs in p independent variables xi and q unknown functions uα of the form

∆µi
α(u) uα

i = 0, µ = 1, . . . , l. (1.1)

We denote by U and X the spaces of dependent variables u = (u1, . . . , uq) ∈ R
q

and independent variables x = (x1, . . . , xp) ∈ R
p, respectively. The functions ∆µi

α

are assumed to be real valued functions on U and are components of the tensor
products ∆µi

α∂i ⊗ duα on X × U . Here, we denote the partial derivatives by uα
i =

∂iu
α ≡ ∂uα/∂xi and we adopt the convention that repeated indices are summed

unless one of them is in a bracket. For simplicity we assume that all considered
functions and manifolds are at least twice continuously differentiable in order to
justify our manipulations. All our considerations have a local character. For our
purposes it suffices to search for solutions defined on a neighborhood of the origin
x = 0. In order to solve (1.1), we look for a map f : X → J1(X × U) annihilating
the contact 1-forms, i.e.

f ∗(duα − uα
i dx

i) = 0. (1.2)

The image of f is in a submanifold of the first jet space J1 over X given by (1.1)
for which J1 is equipped with coordinates xi, uα, uα

i .
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This paper is organized as follows. Section 2 contains a detailed account of
the construction of rank-1 solutions of PDEs (1.1). In section 3 we discuss the
construction of rank-k solutions, using geometric and group invariant properties
of the system (1.1). Section 4 deals with a number of examples of hydrodynamic
type systems which illustrate the theoretical considerations. Several new classes of
solutions in implicit and explicit form are obtained. Section 5 contains a comparison
of our results with the generalized method of characteristics for multi-dimensional
systems of PDEs.

2 The rank-1 solutions

It is well known [2] that any hyperbolic system (1.1) admits rank-1 solutions

u = f(r), r(x, u) = λi(u) x
i, (2.1)

where f = (fα) are some functions of r and a wave vector is a nonzero function

λ(u) = (λ1(u), . . . , λp(u)) (2.2)

such that

ker (∆iλi) 6= 0. (2.3)

Solution (2.1) is called a Riemann wave and the scalar function r(x) is the Riemann
invariant associated with the wave vector λ.

The function f is a solution of (1.1) if and only if the condition

(

∆µi
α(f)λi(f)

)

f ′α, f ′α =
dfα

dr
(2.4)

holds, i.e. if and only if f ′ is an element of ker (∆i λi). Note that equation (2.4) is an
underdetermined system of the first order ordinary differential equations (ODEs) for
f . The image of a solution (2.1) is a curve in U space defined by the map f : R → R

q

satisfying the set of ODEs (2.4). The extent to which expresion (2.4) constrains the
function f depends on the dimension of ker (∆iλi). For example, if ∆i λi = 0 then
there is no constraint on the function f at all and no integration is involved. The
rank-1 solutions have the following common properties :
1. The Jacobian matrix is decomposable (in matrix notation)

∂u =

(

1 −
∂f

∂r

∂r

∂u

)−1
∂f

∂r
λ, (2.5)

or equivalently

∂u =
∂f

∂r

(

1 −
∂r

∂u

∂f

∂r

)−1

λ, (2.6)
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where we have

∂u = (uα
i ) ∈ R

q×p,
∂f

∂r
=

(

∂fα

∂r

)

∈ R
q,

∂r

∂u
=

(

∂r

∂uα

)

=
∂λi

∂uα
xi ∈ R

q, λ = (λi) ∈ R
p.

(2.7)

This property follows directly from differentiation of (2.1). The inverses
(

1 − ∂f
∂r

∂r
∂u

)−1

or
(

1 − ∂r
∂u

∂f
∂r

)−1
are scalar functions and are defined, since ∂r/∂u = 0 at x = 0. From

equations (2.5) or (2.6), it can be noted that u(x) has rank at most equal to 1.
2. The graph of the rank-1 solution Γ = {x, u(x)} is (locally) invariant under the
linearly independent vector fields

Xa = ξi
a(u)∂i, a = 1, . . . , p− 1 (2.8)

acting on X × U space. Here the vectors

ξa(u) =
(

ξ1
a(u), . . . , ξ

p
a(u)

)T
(2.9)

satisfy the orthogonality conditions

λi ξ
i
a = 0, a = 1, . . . , p− 1 (2.10)

for a fixed wave vector λ for which (2.3) holds. The vector fields (2.8) span a
Lie vector module g over functions on U which constitutes an infinite-dimensional
Abelian Lie algebra. The algebra g uniquely defines a module Λ (over the functions
on U) of 1-forms λi(u) dx

i annihilating all elements of g. A basis of Λ is given by

λ = λi(u) dx
i, ξi

a λi = 0 (2.11)

for all indices a = 1, . . . , p− 1. The set {r = λi(u)x
i, u1, . . . , uq} is the complete set

of invariants of the vector fields (2.8).
3. It should be noted that rescaling the wave vector λ produces the same solution
due to the homogeneity of the original system (1.1).
4. Due to the orthogonality conditions (2.10), together with property (2.5) or (2.6),
any rank-1 solution is a solution of the overdetermined system of equations composed
of system (1.1) and the differential constraints

ξi
a(u) u

α
i = 0, a = 1, . . . , p− 1. (2.12)

The side equations (2.12) mean that the characteristics of the vector fields (2.8) are
equal to zero.
5. One can always find nontrivial solutions of (2.4) if (1.1) is an underdetermined
system (l < q) or if it is properly determined (l = q) and hyperbolic. Here, a weaker
assumption can be imposed on the system (1.1). Namely, it is sufficient to require
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that eigenvalues of the matrix (∆iλi) are real functions.

The method of construction of rank-1 solutions to (1.1) can be summarized as
follows. First, we seek a wave vector λ = (λ1, . . . , λp) such that

rank
(

∆µi
αλi

)

< l. (2.13)

For each such choice of λi we look for the solutions γα of the wave relations

(

∆µi
α λi

)

γα = 0, µ = 1, . . . , l. (2.14)

Functions fα(r) are required to satisfy the ODEs

f ′α(r) = γα(f(r)). (2.15)

Alternatively, the system of equations (2.4) is linear in the variables λi. Nonzero
solutions λi exist if and only if

rank
(

∆µi
a (f(r)) f ′α(r)

)

< p. (2.16)

If (2.16) is satisfied for some function f(r) then one can easily find λi(r) satisfying
equations (2.4). Using u = f(r) one can define λi(u) (not uniquely in general). If
l < p then (2.16) is identically satisfied for any function f(r) and this approach does
not require any integration.

3 The rank-k solutions

This section is devoted to the construction of rank-k solutions of a multi-dimensional
system of PDEs (1.1). These solutions may be considered as nonlinear superposi-
tions of rank-1 solutions.

Suppose that we fix k linearly independent wave vectors λ1, . . . , λk, 1 ≤ k < p
with Riemann invariant functions

rA(x, u) = λA
i (u)xi, A = 1, . . . , k. (3.1)

The equation

u = f (r(x, u)) , r(x, u) =
(

r1(x, u), . . . , rk(x, u)
)

(3.2)

then defines a unique function u(x) on a neighborhood of x = 0. The Jacobian
matrix of (3.2) is given by

∂u =

(

I −
∂f

∂r

∂r

∂u

)−1
∂f

∂r
λ, (3.3)
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or equivalently

∂u =
∂f

∂r

(

I −
∂r

∂u

∂f

∂r

)−1

λ, (3.4)

where f = (fα), fα are arbitrary functions of r = (rA) and

∂u = (uα
i ) ∈ R

q×p,
∂f

∂r
=

(

∂fα

∂rA

)

∈ R
q×k,

λ =
(

λA
i

)

∈ R
k×p,

∂r

∂u
=

(

∂rA

∂uα

)

=
∂λA

i

∂uα
xi ∈ R

k×q.

(3.5)

We assume here that the inverse matrices appearing in expressions (3.3) or (3.4),
denoted by

Φ1 =

(

I −
∂f

∂r

∂r

∂u

)

∈ R
q×q, Φ2 =

(

I −
∂r

∂u

∂f

∂r

)

∈ R
k×k (3.6)

respectively, are invertible in some neighborhood of the origin x = 0. This assump-
tion excludes the gradient catastrophe phenomenon for the function u.

Note that the rank of the Jacobian matrix (3.3) or (3.4) is at most equal to k.
Hence the image of the rank-k solution is a k-dimensional submanifold S which lies
in a submanifold of J1.

If the set of vectors

ξa(u) =
(

ξ1
a(u), . . . , ξ

p
a(u)

)T
, a = 1, . . . , p− k, (3.7)

satisfies the orthogonality conditions

λA
i ξ

i
a = 0 (3.8)

for A = 1, . . . , k, a = 1, . . . , p− k then by virtue of (3.3) or (3.4) we have

Qα
a (x, u(1)) ≡ ξi

a (u)uα
i = 0, a = 1, . . . , p− k, α = 1, . . . , q. (3.9)

Therefore rank-k solutions, given by (3.2), are obtained from the overdetermined
system (1.1) subjected to differential constraints (DCs) (3.9)

∆µi
α(u)uα

i = 0, ξi
a(u)u

α
i = 0, a = 1, . . . , p− k. (3.10)

Note that the conditions (3.9) are more general than the one required for the exis-
tence of Riemann k-wave solutions (see expression (5.1) and discussion in Section
5).

Let us note also that there are different approaches to the overdetermined sys-
tem (3.10) employed in different versions of Riemann invariant method for multi-
dimensional PDEs. The essence of our approach lies in treating the problem from
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the point of view of the conditional symmetry method (for description see e.g. [15]).
Below we proceed with the adaptation of this method for our purpose.

The graph of the rank-k solution Γ = {x, u(x)} of (3.10) is invariant under the
vector fields

Xa = ξi
a(u)∂i, a = 1, . . . , p− k (3.11)

acting on X × U ⊂ R
p × R

q. The functions {r1, . . . , rk, u1, . . . , uq} constitute a
complete set of invariants of the Abelian Lie algebra A generated by the vector
fields (3.11).

In order to solve the overdetermined system (3.10) we subject it to several trans-
formations, based on the set of invariants of A, which simplify its structure consider-
ably. To achieve this simplification we choose an appropriate system of coordinates
on X × U space which allows us to rectify the vector fields Xa, given by (3.11).
Next, we show how to find the invariance conditions in this system of coordinates
which guarantee the existence of rank-k solutions in the form (3.2).

Let us assume that the k by k matrix

Π =
(

λA
i

)

, 1 ≤ A, i ≤ k < p (3.12)

built from the components of the wave vectors λA is invertible. Then the linearly
independent vector fields

Xk+1 = ∂k+1 −
k
∑

A,j=1

(

Π−1
)j

A
λA

k+1∂j ,

...

Xp = ∂p −

k
∑

A,j=1

(

Π−1
)j

A
λA

p ∂j ,

(3.13)

have the required form (3.11) for which the orthogonality conditions (3.8) are satis-
fied. The change of independent and dependent variables

x̄1 = r1(x, u), . . . , x̄k = rk(x, u), x̄k+1 = xk+1, . . . , x̄p = xp, ū1, . . . , ūq = uq (3.14)

permits us to rectify the vector fields Xa and get

Xk+1 = ∂x̄k+1, . . . , Xp = ∂x̄p. (3.15)

Note that a p-dimensional submanifold is transverse to the projection (x, u) → x
at x = 0 if and only if it is transverse to the projection (x̄, ū) → x̄ at x̄ = 0. The
transverse p-dimensional submanifolds invariant under Xk+1, . . . , Xp are defined by
the implicit equation of the form

ū = f(x̄1, . . . , x̄k). (3.16)



8 A.M. Grundland and B. Huard

Hence, expression (3.16) is the general integral of the invariance conditions

ūx̄k+1 = 0, . . . , ūx̄p = 0. (3.17)

The system (1.1) is subjected to the invariance conditions (3.17) and, when written
in terms of new coordinates (x̄, ū) ∈ X × U , takes the form

∆µ
(

Φ1
)−1 ∂ū

∂x̄
λ = 0, , ūx̄k+1 = 0, . . . , ūx̄p = 0, (3.18)

or

∆µ∂ū

∂x̄

(

Φ2
)−1

λ = 0, , ūx̄k+1 = 0, . . . , ūx̄p = 0, (3.19)

where the matrices Φ1 and Φ2 are given by

(

Φ1
)A

i
= δA

i − ūα
i

∂rA

∂ūα
,
(

Φ2
)A

i
= δA

i −
∂rA

∂ūα
ūα

i . (3.20)

The above considerations characterize geometrically the solutions of the overdeter-
mined system (3.10) in the form (3.2). Let us illustrate these considerations with
some examples.

Example 1. Let us assume that there exist k independent relations of depen-
dence for the matrices ∆1, . . . ,∆p such that the conditions

∆µi
αλ

A
i = 0, A = 1, . . . , k (3.21)

hold. Suppose also that the original system (1.1) has the evolutionary form and
each of the q by q matrices A1, . . . , An is scalar, i.e.

∆0 = I, ∆iα
β = ai(u)δα

β , i = 1, . . . , n (3.22)

for some functions a1, . . . , an defined on U , where p = n+ 1 and for convenience we
denote the independent variables by x = (t = x0, x1, . . . , xn) ∈ X. Then the system
(1.1) is particularly simple and becomes

ut + a1(u)u1 + . . .+ an(u)un = 0. (3.23)

The corresponding wave vectors

λ1 = (−a1(u), 1, 0, . . . , 0),

...

λn = (−an(u), 0, . . . , 0, 1)

(3.24)

are linearly independent and satisfy conditions (3.21).
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A vector function u(x, t) is a solution of (3.23) if and only if the vector field

X = ∂t + ai(u)∂i

defined on R
n+q+1 is tangent to the (n + 1)-dimensional submanifold S = {u =

u(x, t)} ⊂ R
n+q+1. The solution is thus identified with the (n + 1)-dimensional

submanifold S ⊂ R
n+q+1 which is transverse to R

n+q+1 → R
n+1 : (x, t, u) → (x, t)

and is invariant under the vector field X. The functions {r(x, t, u) = (r1 = x1 −
a1(u)t, . . . , rn = xn − an(u)t), u1, . . . , uq} are invariants of X, such that dr1 ∧ . . . ∧
drn ∧ du1 ∧ . . . ∧ duq 6= 0. If we define t̄ = t, ū = u, then (r, t̄, ū) are coordinates on
R

n+q+1 and the vector field X can be rectified

X = ∂t̄.

The general solution is

S = {F (r, ū) = 0}

where F : R
n+q → R

q satisfies the condition

det

(

∂F

∂r

∂r

∂ū
+
∂F

∂ū

)

6= 0

but is otherwise arbitrary. Note that it may be assumed that

∂r

∂u
(x0, t0, u0) = 0,

in which case the transversality condition is

det

(

∂F

∂ū
(x0, t0, u0)

)

6= 0.

Hence the general solution of (3.23) near (x0, t0, u0) is

S = {ū = f(r)},

where f : R
n → R

q is arbitrary. Thus the equation

u = f(x1 − a1(u)t, . . . , xn − an(u)t), (3.25)

defines a unique function u(x, t) on a neighborhood of the point (x0, t0, u0) for any
f . Note that

t = 0, u(x, 0) = f(x1, . . . , xn),

so the function f is simply the Cauchy data on {t = 0}.
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Example 2. Another interesting case to consider is when the matrix Φ1 (or Φ2)
is a scalar matrix. Then system (3.18) is equivalent to the quasilinear system in k
independent variables x̄1, . . . , x̄k and q dependent variables ū1, . . . , ūq. So, we have

BA(ū)ūα
A = 0, (3.26)

where

BA = ∆iλA
i . (3.27)

If k ≥ 2 then Φ1 is a scalar if and only if

∂r1

∂u
= 0, . . . ,

∂rk

∂u
= 0 (3.28)

and consequently, if and only if the vector fields λ1, . . . , λk are constant wave vectors.
Finally, a more general situation occurs when the matrix Φ1 (or Φ2) satisfies the

conditions

∂Φ1

∂x̄k+1
= 0, . . . ,

∂Φ1

∂x̄p
= 0. (3.29)

Then the system (3.18) is independent of variables x̄k+1, . . . , x̄p. The conditions
(3.29) hold if and only if

∂2r

∂u∂x̄k+1
= 0, . . . ,

∂2r

∂u∂x̄p
= 0. (3.30)

Using (3.1) and (3.12) we get

∂λA
i

∂u
=

k
∑

l,B=1

∂ΠA
l

∂u

(

Π−1
)l

B
λB

i . (3.31)

Equation (3.31) can be rewritten in the simpler form

∂

∂u

(

k
∑

B=1

(

Π−1
)l

B
λB

i

)

= 0, 1 ≤ l ≤ k < i ≤ p. (3.32)

Thus system (3.18) is independent of variables x̄k+1, . . . , x̄p if the k by p− k matrix
(

λB
i

)

, 1 ≤ B ≤ k < i ≤ p is equal to the matrix ΠC, where C is a constant k
by (p − k) matrix. In this case (3.18) is a system not necessarily quasilinear, in k
independent variables x̄1, . . . , x̄k and q dependent variables ū1, . . . , ūq.

Let us now derive the neccesary and sufficient conditions for existence of solutions
in the form (3.2) of the overdetermined system (3.10). Substituting (3.3) or (3.4)
into (1.1) yields

Tr

[

∆µ

(

I −
∂f

∂r

∂r

∂u

)−1
∂f

∂r
λ

]

= 0, (3.33)
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or equivalently

Tr

[

∆µ∂f

∂r

(

I −
∂r

∂u

∂f

∂r

)−1

λ

]

= 0, (3.34)

respectively, where

∆µ =
(

∆µi
α

)

∈ R
p×q, µ = 1, . . . , l. (3.35)

Given the system of PDEs (1.1) (i.e. functions ∆µi
α(u)) it follows that equations

(3.33) (or (3.34)) are conditions on the functions fα(r) and λA
i (u) (or ξi

a(u)). Since
∂r/∂u depends explicitly on x it may happen that these conditions have only trivial
solutions (i.e. f=const) for some values of k. We discuss a set of conditions following
from (3.33) or (3.34) which allow the system (3.10) to possess the nontrivial rank-k
solutions.

Let g be a (p-k)-dimensional Lie vector module over C∞(X×U) with generators
Xa given by (3.11). Let Λ be a k-dimensional module generated by k < p linearly
independent 1-forms

λA = λA
i (u)dxi, A = 1, . . . , k

which are annihilated by Xa ∈ g. It is assumed here that the vector fields Xa and
λA are related by the orthogonality conditions (3.8) and form a basis of g and Λ,
respectively. For k > 1, it is always possible to choose a basis λA of the module Λ
of the form

λA = dxiA + λA
ia dx

ia , A = 1, . . . , k (3.36)

where (iA, ia) is a permutation of (1, . . . , p). Here we split the coordinates xi into
xiA and xia . Then from (3.1) we obtain the relation

∂rA

∂uα
=
∂λA

ia

∂uα
xia . (3.37)

Substituting (3.37) into equations (3.33) or (3.34) yields, respectively

Tr

(

∆µ(I −Qax
ia)−1∂f

∂r
λ

)

= 0, (3.38)

or

Tr

(

∆µ∂f

∂r
(I −Kax

ia)−1λ

)

= 0, (3.39)

where we use the following notation

Qa =
∂f

∂r
ηa ∈ R

q×q, Ka = ηa
∂f

∂r
∈ R

k×k, (3.40)

ηa =

(

∂λA
ia

∂uα

)

∈ R
k×q, ia = 1, . . . , p− 1. (3.41)



12 A.M. Grundland and B. Huard

The functions rA and xia are all independent in the neighborhood of the origin x = 0.
The functions ∆µ, ∂f

∂r
, λ, Qa and Ka depend on r only. For these specific functions,

equations (3.38) (or (3.39)) must be satisfied for all values of coordinates xia . In
order to find appropriate conditions for f(r) and λ(u) let us notice that, according
to the Cayley-Hamilton theorem, for any n by n invertible matrice M, (M−1 detM)
is a polynomial in M of order (n− 1). Hence, one can replace equation (3.38) by

Tr

(

∆µ Q
∂f

∂r
λ

)

= 0, (3.42)

where we introduce the following notation

Q = (I −Qax
ia)−1 det (I −Qax

ia).

Taking equation (3.42) and all its xia derivatives (with r=const) at xia = 0, yields

Tr

(

∆µ∂f

∂r
λ

)

= 0, (3.43)

Tr

(

∆µQ(a1
. . . Qas)

∂f

∂r
λ

)

= 0, (3.44)

where s = 1, . . . , q − 1 and (a1, . . . , as) denotes symmetrization over all indices in
the bracket. A similar procedure for equation (3.39) yields (3.43) and the trace
condition

Tr

(

∆µ ∂f

∂r
K(a1

, . . . , Kas)λ

)

= 0, (3.45)

where now s = 1, . . . , k − 1.
Equation (3.43) represents an initial value condition on a surface in X space given
by xia = 0. Equations (3.44) (or (3.45)) correspond to the preservation of (3.43) by
flows represented by the vector fields (3.11). Note that Xa can be put into the form

Xa = ∂ia − λA
ia∂A, ξi

a · λ
A
i = 0, A = 1, . . . , k. (3.46)

By virtue of (3.40), (3.41), equations (3.44) or (3.45) take the unified form

Tr

(

∆µ ∂f

∂r
η(a1

∂f

∂r
. . . ηas)

∂f

∂r
λ

)

= 0, (3.47)

where either max s = q − 1 or max s = k − 1.
The vector fieldsXa and the Lie module g spanned by the vector fieldsX1, . . . , Xp−k

are called the conditional symmetries and the conditional symmetry module of (1.1),
respectively if Xa are Lie point symmetries of the original system (1.1) supplemented
by the DCs (3.9) [15].
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Let us now associate the system (1.1) and the conditions (3.9) with the subvari-
eties of the solution spaces

B∆ = {(x, u(1)) : ∆µi
α(u) uα

i = 0, µ = 1, . . . , l},

and

BQ = {(x, u(1)) : ξi
a(u)u

α
i = 0, a = 1, . . . , p− k, α = 1, . . . , q},

respectively. We have the following.

Proposition 1. A nondegenerate first order hyperbolic system of PDEs (1.1) admits
a (p-k)-dimensional Lie vector module g of conditional symmetries if and only if (p-
k) linearly independent vector fields X1, . . . , Xp−k satisfy the conditions (3.43) and
(3.47) on some neighborhood of (x0, u0) of B = B∆ ∩ BQ.

Proof. The vector fields Xa constitute the conditional symmetry module g for the
system (1.1) if they are Lie point symmetries of the overdetermined ststem (3.10).
This means that the first prolongation of Xa has to be tangent to the system (3.10).
Hence g is a conditional symmetry module of (1.1) if and only if the equations

pr(1)Xa(∆
µi
α(u) uα

i = 0, pr(1)Xa

(

ξi
b(u)u

α
i

)

= 0, a = 1, . . . , p− k (3.48)

are satisfied on J1 whenever the equations (3.10) hold. Now we show that if the
conditions (3.43) and (3.47) are satisfied then the symmetry criterion (3.48) is iden-
tically equal to zero.

In fact, applying the first prolongation of the vector fields Xa

pr(1)Xa = Xa + ξi
a,uβu

β
j u

α
i

∂

∂uα
j

to the original system (1.1) yields

pr(1)Xa

(

∆µi
αu

α
i

)

= ∆µi
αξ

j
a,uβu

β
i u

α
j = 0, (3.49)

whenever equations (3.10) hold. On the other hand, carrying out the differentiations
of (3.8) gives

ξj
a,uβλ

B
j = −ξj

aλ
B
j,uβ . (3.50)

Comparing (3.49) and (3.50) leads to

ΩµA
Bξ

j
aZA(λB

j ) = 0, (3.51)

where we introduce the following notation

ΩµA
B = ∆µi

αZ
α
Bλ

A
i . (3.52)
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Here the new vector fields ZB are defined on U

ZA = Zα
A

∂

∂uα
∈ TuU. (3.53)

It is convenient to write equation (3.51) in the equivalent form

Tr(∆µZθaZλ) = 0, µ = 1, . . . , l (3.54)

where the following notation has been used

θa = λA
i,uβξ

i
a. (3.55)

The assumption that system (1.1) is hyperbolic implies that there exist the real-
valued vector fields λA and γA defined on U for which the wave relation

(

∆µ i
αλ

A
i

)

γα
(A) = 0, A = 1, . . . , k (3.56)

is satisfied and that the U space is spanned by the linearly independent vector fields

γA = γα
A ∂uα ∈ TuU. (3.57)

Hence, one can represent the vector fields ZA through the basis generated by the
vector fields {γ1, . . . , γk}, i.e.

ZA = hB
AγB. (3.58)

Using equations (3.3) and (3.6) we find the coefficients

hB
A = ((φ1)−1)B

A .

This means that the submanifold S, given by (3.2), can be represented parametri-
cally by

∂fα

∂rA
= hB

Aγ
α
B. (3.59)

On the other hand, comparing (3.3) and (3.58) gives

uα
i = Zα

Aλ
A
i . (3.60)

Applying the invariance criterion (3.48) to the side conditions (3.9) we obtain

pr(1)Xa(Q
α
b ) = ξi

[bξ
j
a],uβu

β
i u

α
j . (3.61)

The bracket [a, b] denotes antisymmetrization with respect to the indices a and b.
By virtue of equations (3.50) and (3.60), the right side of (3.61) is identically equal
to zero. Substituting (3.58) into equation (3.54) and taking into account equation
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(3.36) and (3.59) we obtain that for any value of x ∈ X the resulting formulae
coincide with equations (3.43) and (3.47). Hence, the infinitesimal symmetry cri-
terion (3.48) for the overdetermined system (3.10) is identically satisfied whenever
conditions (3.43) and (3.47) hold.

The converse also holds. The assumption that the system (1.1) is nondegenerate

means that it is locally solvable and takes a maximal rank at every point (x0, u
(1)
0 ) ∈

B∆. Therefore [14] the infinitesimal symmetry criterion is a necessary and sufficient
condition for the existence of symmetry group G of the overdetermined system
(3.10). Since the vector fields Xa form an Abelian distribution, it follows that the
conditions (3.43) and (3.47) hold. That ends the proof since the solutions of the
original system (1.1) are invariant under the Lie algebra generated by (p−k) vectors
fields X1, . . . , Xp−k. Q.E.D.

Note that the set of solutions of the determining equations obtained by applying
the symmetry criterion to the overdetermined system (3.10) is different than the
set of solutions of the determining equations for the initial system (1.1). Thus the
system (3.10) other symmetries than the original system (1.1). So, new reductions
for the system (1.1) can be constructed, since each solution of system (3.10) is a
solution of system (1.1).

In our approach the construction of solutions of the original system (1.1) requires
us to solve first the system (3.47) for λA

i as functions of uα and then find u = f(r) by
solving (3.43). Note that the functions f ∗(λA

i ) are the functions λA
i (f) pulled back

to the surface S. The λA
i (f) then become functions of the parameters r1, . . . , rk on

S. For simplicity of notation we denote f ∗(λA
i ) by λA

i (r1, . . . , rk).
The system composed of (3.43) and (3.47) is, in general, nonlinear. So, we cannot

expect to solve it in a closed form, except in some particular cases. But nevertheless,
as we show in section 4, there are physically interesting examples for which solutions
of (3.43) and (3.47) lead to the new solutions of (1.1) which depend on some arbitrary
functions. These particular solutions of (3.43) and (3.47) are obtained by expanding
each function λA

i into a polynomial in the dependent variables uα and requiring that
the coefficients of the successive powers of uα vanish. We then obtain a system of
first order PDEs for the coefficients of the polynomials. Solving this system allows
us to find some particular classes of solutions of the initial system (1.1) which can
be constructed by applying the symmetry reduction technique.

4 Examples of applications

We start with considering the case of rank-2 solutions of the system (1.1) with
two dependent variables (q = 2). Then (3.47) adopts the simplified form.

Tr

(

∆µ∂f

∂r
ηa
∂f

∂r
λ

)

= 0. (4.1)
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By virtue of (3.43), equation (4.1) can be transformed to

Tr

[

∆µ∂f

∂r

(

ηa
∂f

∂r
− ITr

(

ηa
∂f

∂r

))

λ

]

= 0. (4.2)

Using the Cayley Hamilton identity, we get the relation

AB − I TrAB = (B − I TrB)(A− I TrA) (4.3)

for any 2 by 2 matrices A,B ∈ R
2×2. Now we can rewrite (4.2) in the equivalent

form

−Tr

[

∆µ∂f

∂r

(

∂f

∂r
− ITr

∂f

∂r

)

(ηa − ITrηa)λ

]

= 0. (4.4)

So we have

det

(

∂f

∂r

)

Tr[∆µ(ηa − ITrηa)λ] = 0. (4.5)

The rank-2 solutions require that the condition det ∂f/∂r 6= 0 be satisfied (otherwise
q = 2 can be reduced to q = 1). As a consequence of this, we obtain the following
condition

Tr[∆µ(ηa − ITrηa)λ] = 0, µ = 1, . . . , l, (4.6)

which coincides with the result obtained earlier for this specific case [12]. One can
look first for solutions λ(u) of (4.6) and then find f(r) by solving (3.43). Note that
equations (4.6) form a system of l(p − 2) equations for 2(p − 2) functions λA

ia(u).
This indicates that they should have solutions (say, for generic systems) if (1.1) is
not overdetermined.

Example 3. We are looking for rank-2 solutions of the (2+1) hydrodynamic
type equations

ui
t + ujui

j + Aij
ku

k
j = 0, i, j, k = 1, 2 (4.7)

where Ai are some matrix functions of u1 and u2. Using the condition representing
the tracelessness of the matrices ∆1i

αu
α
i and ∆2i

αu
α
i , it is convenient to rewrite the

system (4.7) in the following form

Tr





(

1 u1 + A11
1 u2 + A12

1

0 A11
2 A12

2

)





u1
t u2

t

u1
x u2

x

u1
y u2

y







 = 0,

Tr





(

0 u1 u2

1 u1 + A21
2 u2 + A22

2

)





u1
t u2

t

u1
x u2

x

u1
y u2

y







 = 0.

(4.8)
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Let F be a smooth orientable surface immersed in 3-dimensional Euclidean (x, y, t) ∈
X space. Suppose that F can be written in the following parametric form

u = f(r1, r2) = (u1(r1, r2), u2(r1, r2)), (4.9)

such that the Jacobian matrix is different from zero

J = det

(

∂fα

∂rA

)

= det

(

∂u1/∂r1 ∂u1/∂r2

∂u2/∂r1 ∂u2/∂r2

)

6= 0. (4.10)

Without loss of generality, it is possible to choose a basis λA of module Λ of the
form

λA
i =

(

λ1
1 λ1

2 λ1
3

λ2
1 λ2

2 λ2
3

)T

=

(

ε a1 b1

ε a2 b2

)T

, ε = ±1, (4.11)

where aA and bA are functions of u1 and u2 to be determined.
The rank-2 solution can be constructed from the most general solution of equa-

tions (4.6) for λA = (−1, aA, bA), A = 1, 2. These equations lead to a system of four
PDEs with four dependent variables aA, bA, A = 1, 2 and two independent variables
u1 and u2,

− (A11
2 a

2 + A12
2 b

2)
∂a1

∂u1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂a1

∂u2

+ (A11
2 a

1 + A12
2 b

1)
∂a2

∂u1
− ((u1 + A11

1 )a1 + (u2 + A12
1 )b1 − 1)

∂a2

∂u2
= 0,

(4.12)

− (A11
2 a

2 + A12
2 b

2)
∂b1

∂u1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂b1

∂u2

+ (A11
2 a

1 + A12
2 b

1)
∂b2

∂u1
− ((u1 + A11

1 )a1 + (u2 + A12
1 )b1 − 1)

∂b2

∂u2
= 0,

(1 − (u1 + A21
2 )a2 − (u2 + A22

2 )b2)
∂a1

∂u1
+ (A211a2 + A22

1 b
2)
∂a1

∂u2

− (1 − (u1 + A21
2 )a1 − (u2 + A22

2 )b1)
∂a2

∂u1
− (A21

1 a
1 + A22

1 b
1)
∂a2

∂u2
= 0,

(1 − (u1 + A21
2 )a2 − (u2 + A22

2 )b2)
∂b1

∂u1
+ (A211a2 + A22

1 b
2)
∂b1

∂u2

− (1 − (u1 + A21
2 )a1 − (u2 + A22

2 )b1)
∂b2

∂u1
− (A21

1 a
1 + A22

1 b
1)
∂b2

∂u2
= 0.

Finally, a rank-2 solution of (4.8) is obtained from the explicit parametrization
of the surface F in terms of the parameters r1 and r2, by solving equations (3.43)
in which λA adopt the form (4.6)

((u1 + A11
1 )a1 + (u2 + A12

1 )b1 − 1)
∂u1

∂r1
+ ((u1 + A11

1 )a2 + (u2 + A12
1 )b2 − 1)

∂u1

∂r2

+ (A11
2 a

1 + A12
2 b

1)
∂u2

∂r1
+ (A11

2 a
2 + A12

2 b
2)
∂u2

∂r2
= 0,
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(4.13)

(A21
1 a

1 + A22
1 b

1)
∂u1

∂r1
+ (A21

1 a
2 + A22

1 b
2)
∂u1

∂r2
+ ((u1 + A21

2 )a1 + (u2 + A22
2 )b1 − 1)

∂u2

∂r1

+ ((u1 + A21
2 )a2 + (u2 + A22

2 )b2 − 1)
∂u2

∂r2
= 0,

while the quantities r1 and r2 are implicitly defined as functions of y, x, t by equation
(3.1).

In the case when equation (4.2) does admit two linearly independent vector fields
λA with ε = −1, there exists a class of rank-2 solutions of equations (4.12) and
(4.13) invariant under the vector fields

X1 = ∂t + u1∂x, X2 = ∂t + u2∂y. (4.14)

Following the procedure outlined in Section 3 we assume that the functions f 1 and
f 2 appearing in equation (3.2) are linear in u2. Then the invariance conditions take
the form

x− u1t = g(u1) + u2h(u1), y − u2t = a(u1) + u2b(u1), (4.15)

where a, b, g and h are some functions of u1.
One can show that if h = 0, then the solution of the system (4.12), (4.13) is

defined implicitly by the relations

x− u1t = g(u1), y − u2t = a(u1) + u2g,u1, (4.16)

where a and g are arbitrary functions of u1. Note that in this case the functions u1

and u2 satisfy the following system of equations

u1
t + u1u1

x + u2u1
y + A11

1 (u1
x − u2

y) + A12
1 u

1
y = 0,

u2
t + u1u2

x + u2u2
y + A21

1 (u1
x − u2

y) + A22
1 u

1
y = 0,

(4.17)

for any functions Aij
k of two variables u1 and u2.

If the function h of u1 does not vanish anywhere (h 6= 0) then the rank-2 solution is
defined implicitly by equations (4.15) and satisfies the following system of PDEs

u1
t + u1u1

x + u2u1
y + A12

2 [u2
y − u1

x + l(u1)u2
x +m(u1)u1

y] = 0,

u2
t + u1u2

x + u2u2
y + A22

2 [u2
y − u1

x + l(u1)u2
x +m(u1)u1

y] = 0,
(4.18)

where A12
2 and A22

2 are any functions of two variables u1 and u2. Given the functions
l and m of u1, we can prescribe the functions a and b in expression (4.15) to find

h =

∫

l b,u1du1, g =

∫

[b− hm− a,u1]du1. (4.19)
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For instance, consider a rank-2 solution of equations (4.12) and (4.13) invariant
under the vector fields

X1 = ∂t + u1∂x, X2 = ∂t − u2∂y (4.20)

with the wave vectors λA which are the nonzero multiples of λ1 = (u1,−1, 0) and
λ2 = (u2, 0,−1). Then the solution is defined by the implicit relations

x− u1t = g(u1),

y + u2t = h(u1) + u2g,u1.
(4.21)

and satisfies the following system of equations

u1
t + u1u1

x + u2u1
y + b(u1, u2)u1

y = 0,

u2
t + u1u2

x + u2u2
y + c(u1, u2)u1

y = 0,
(4.22)

where b and c are arbitrary functions of u1 and u2.

Thus, putting it all together, we see that the constructed solutions correspond
to superpositions of two rank-1 solutions (i.e. simple waves) with local velocities
u1 and u2, respectively. According to [10], if we choose the initial data (t = 0) for
the functions u1 and u2 sufficiently small and such that their first derivatives with
respect to x and y will have compact and disjoint supports, then asymptotically
there exists a finite time t = T > 0 for which rank-2 solution decays in the exact
way in two rank-1 solutions, being of the same type as in the initial moment.

Example 4. Consider the overdetermined hyperbolic system in (2+1) dimensions
(p = 3)

∂~u

∂t
+ (~u · ∇)~u+ ka grad a = 0

∂a

∂t
+ (~u · ∇)a+ k−1a div ~u = 0,

∂a

∂x
= 0,

∂a

∂y
= 0,

(4.23)

describing the nonstationary isentropic flow of a compressible ideal fluid. Here we

use the following notations : ~u = (u1, u2) is the flow velocity, a(t) =
(

γp
ρ

)1/2

6= 0 is

the sound velocity which depends on t only, k = 2(γ − 1)−1 and γ is the polytropic
exponent.
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The system (4.23) can be written in an equivalent form as

Tr









1 u1 u2

0 0 0
0 ka 0









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0,

Tr









0 0 0
1 u1 u2

0 0 ka









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0,

Tr









0 k−1a 0
0 0 k−1a
1 u1 u2









u1
t u2

t at

u1
x u2

x 0
u1

y u2
y 0







 = 0.

(4.24)

We are interested here in the rank-2 solutions of (4.24). So, we require that con-
ditions (3.43) and (3.47) be satisfied. This demand constitutes the necessary and
sufficient condition for the existence of a surface F written in a parametric form
(4.9) for which equation (4.10) holds. In our case, p = q = 3 and k = 2, conditions
(3.43) and (3.47) become

Tr

(

∆µ∂f

∂r
λ

)

= 0, µ = 1, 2, 3, (4.25)

and

Tr

(

∆µ∂f

∂r

(

η1
∂f

∂r
η2 + η2

∂f

∂r
η1

)

∂f

∂r
λ

)

= 0, (4.26)

respectively. Here, we assume the following basis for the wave vectors

λA
i =

(

λ1
0 λ1

1 λ1
2

λ2
0 λ2

1 λ2
2

)T

=

(

−1 v1 w1

−1 v2 w2

)T

, (4.27)

where vA and wA are some functions of u1 and u2 to be determined. The 2 by 3
matrices ηa and the 3 by 2 matrix ∂f/∂r take the form

ηa =
∂λA

ia

∂uα
=

(

∂λ1
ia/∂u

1 ∂λ1
ia/∂u

2 ∂λ1
ia/∂a

∂λ2
ia/∂u

1 ∂λ2
ia/∂u

2 ∂λ2
ia/∂a

)

, a = 1, 2

∂f

∂r
=





∂u1/∂r1 ∂u1/∂r2

∂u2/∂r1 ∂u2/∂r2

∂a/∂r1 ∂a/∂r2



 .

(4.28)
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Equations (4.25) lead to the following differential conditions

∂u1

∂r1
+
∂u1

∂r2
+ (u1 − kav2)

∂u2

∂r1
+ (u1 − kaw2)

∂u2

∂r2
+ u2(

∂a

∂r1
+
∂a

∂r2
) = 0,

v1∂u
1

∂r1
+ w1∂u

1

∂r2
+ u1(v1∂u

2

∂r1
+ w1∂u

2

∂r2
) + (u2v1 + kav2)

∂a

∂r1

+ (u2w1 + kaw2)
∂a

∂r2
= 0,

k(v2∂u
1

∂r1
+ w2∂u

1

∂r2
) − (a− kv2u1)

∂u2

∂r1

− (a− w2ku1)
∂u2

∂r2
+ (av1 + kv2u2)

∂a

∂r1
+ (aw1 + kw2u2)

∂a

∂r2
= 0.

(4.29)

Assuming that we have found vA and wA as functions of u1 and u2, we have to solve
(4.26) for the unknown functions u1 and u2 in terms of r1 and r2. The resulting
expressions in the equations (4.26) are rather complicated, hence we omit them here.
Various rank-2 solutions are determined by a specification of functions vA and wA in
terms of u1 and u2. By way of illustration we show how to obtain a solution which
depends on one arbitrary function of two variables.

Let us suppose that we are interested in the rank-2 solutions invariant under the
vector fields

X1 = ∂t + u1∂x, X2 = ∂t + u2∂y. (4.30)

So, the functions r1 = x − u1t and r2 = y − u2t are the Riemann invariants of
these vector fields. Under this assumption, equations (4.25) and (4.26) can be easily
solved to obtain the Jacobian matrix

J =
∂(u1, u2)

∂(r1, r2)
6= 0 (4.31)

which has the characteristic polynomial with constant coefficients. This means that
the trace and determinant of J are constant,

(i) u1
r1 + u2

r2 = 2C1,

(ii) u1
r1u2

r2 − u1
r2u2

r1 = C2.
C1, C2 ∈ R (4.32)

The trace condition (4.32(i)) implies that there exists a function h of r1 and r2 such
that the conditions

u1 = C1r
1 + hr2, u2 = C1r

2 − hr1, (4.33)

hold. The determinant condition (4.32(ii)) requires that the function h(r1, r2) sat-
isfies the Monge-Ampère equation

hr1r1hr2r2 − h2
r1r2 = C, C ∈ R. (4.34)
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Hence, the general integral of the system (4.23) has the implicit form defined by the
relations between the variables t, x, y, u1 and u2

u1 = C1(x− u1t) +
∂h

∂r2
(x− u1t, y − u2t),

u2 = C1(y − u2t) +
∂h

∂r1
(x− u1t, y − u2t),

a = a0

(

(1 + C1t)
2 + Ct2

)−1/k
, a0 ∈ R

(4.35)

where the function h obeys (4.34).
Note that the Gaussian curvatureK expressed in curvilinear coordinates (t, r1, r2) ∈

R
3 of the surface S = {t = h(r1, r2)} is not constant and is given by

K(r1, r2) =
C

1 + h2
r1 + h2

r2

. (4.36)

For example, a particular nontrivial class of solution of (4.23) can be obtained if we
assume that C = 0. In this case the general solution of (4.23) depends on three
parameters, a0, C1, m ∈ R and takes the form

u1 = C1(x− u1t) + (1 −m)

(

x− u1t

y − u2t

)m

,

u2 = C1(y − u2t) −m

(

y − u2t

x− u1t

)1−m

,

a(t) =
a0

(1 + C1t)2/k
.

(4.37)

Note that if C = 0 and C1 = 0 then the Jacobian matrix J is nilpotent and the
divergence of the vector ~u is equal to zero. Then the expression

u1 = (1 −m)

(

x− u1t

y − u2t

)m

, a = a0,

u2 = −m

(

y − u2t

x− u1t

)1−m

,

(4.38)

defines a solution ~u = (u1, u2) to incompressible Euler equations

~ut + (~u · ∇)~u = 0, div ~u = 0, a = a0. (4.39)

Note that for m = 2, the explicit form of (4.38) is

u1 =
−y2 − 2tx±

√

y2 + 4tx

2t2
,

u2 =
y ∓

√

y2 + 4tx

t
.

(4.40)
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Example 5. Now let us consider a more general case of to the autonomous system
(4.23) in p = n + 1 independent (t, xi) ∈ X and q = n + 1 dependent (a, ui) ∈ U
variables. We look for the rank-k solutions, when k = n. The change of variables in
the system (4.23) under the point transformation

t̄ = t, x̄1 = x1 − u1t, . . . , x̄n = xn − unt, ā = a, ū = u (4.41)

leads to the following system

Dū

Dt̄
= 0,

Dā

Dx̄
= 0,

Dā

Dt̄
+ k−1āTr

(

B−1Dū

Dx̄

)

= 0, a 6= 0
(4.42)

where the total derivatives are denoted by

D

Dt̄
=

∂

∂t
+ ūi

t̄

∂

∂ūi
,

D

Dx̄j
=

∂

∂x̄j
+ ūi

x̄j

∂

∂ūi
, j = 1, . . . , n (4.43)

and the n by n nonsigular matrix B has the form

B = I + t
∂ū

∂x̄
. (4.44)

The general solution of the first equation in (4.42) is

ū = f(x̄), x̄ = (x̄1, . . . , x̄n) (4.45)

for some function f : R
n → R

n. The second equation in (4.42) can be written in an
equivalent form

∂

∂t̄

(

ln |ā(t)|k
)

+ Tr
[

(I + t̄Df(x̄))−1Df(x̄)
]

= 0, (4.46)

where the Jacobian matrix is denoted by

Df(x̄) =
∂f

∂x̄
(x̄). (4.47)

Differentiation of equation (4.46) with respect to x̄ yields

∂2

∂x̄∂t̄
(ln det (I + t̄Df(x̄))) = 0 (4.48)

with general solution

det (I + t̄Df(x̄)) = α(x̄)β(t̄) (4.49)
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for some functions α : R
n → R and β : R → R. Evaluating (4.49) at the initial data

t = 0 implies α(x̄) = β(0)−1. Therefore

det (I + t̄Df(x̄)) =
β(t̄)

β(0)
. (4.50)

So, we have

∂

∂x
det (I + t̄Df(x̄)) = 0. (4.51)

Now, let us write the determinant in the form of the characteristic polynomial

det (I + t̄Df(x̄)) = t̄nPn(ε, x̄), ε =
1

t̄
(4.52)

where

det (εI +Df(x̄)) = εn + pn−1(x̄)ε
n−1 + . . .+ p1(x̄)ε+ p0(x̄). (4.53)

Equation (4.51) holds if and only if the coefficients of the characteristic polynomial
p0, . . . , pn−1 are constants. So, equation (4.46) implies that

∂

∂t̄
ln |ā(t̄)|k +

∂

∂t̄
ln | det (I + t̄Df(x̄))| = 0.

Then we have,

∂

∂t̄

(

|ā(t̄)|k det (I + t̄Df(x̄))
)

= 0. (4.54)

Solving equation (4.54) we obtain

ā(t̄) = γ (det (I + t̄Df(x̄)))−1/k , 0 6= γ ∈ R. (4.55)

Thus, the general solution of system (4.23) is

u = f(x̄), a(t̄) = γ [1 + pn−1t̄+ . . .+ p0t̄
n]−1/k , (4.56)

for any differentiable function f : R
n → R

n and takes the form of a constant
characteristic polynomial on the Cauchy data t = 0

Pn(ε) = εn + pn−1ε
n−1 + . . .+ p1ε+ p0. (4.57)

Note that the function a is constant if and only if

Pn(ε) = εn. (4.58)

This fact holds if and only if the Jacobian matrix Df(x̄) is nilpotent.
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Note that in the particular case when p = 2, the general explicit solution of (4.23)
is given by

u(x, t) = (β + αx)(1 + αt)−1, a(t) = γ(1 + αt)−1/k, α, β, γ ∈ R. (4.59)

An extension of this solution to the (n+1)-dimensional space X is as follows

u(x, t) = (I + tα)−1(β + αx), a(t) = γ(det (I + αt))−1/k, (4.60)

where β is any constant n-component vector and α is any n by n constant matrix.
In this case the Jacobian matrix is constant

Df(x̄) = α (4.61)

for any x̄ ∈ R
n.

Finally, a similar computation can be performed for the case in which the vector
function ~u = (u1, u2, u3) satisfies the overdetermined system (4.39). In the above
notation, an invariant solution under the vector fields

Xa = ∂t + ua∂(a), a = 1, 2, 3 (4.62)

is given by ū = f(x̄) and is a divergence free solution

div ~u = 0 (4.63)

if and only if the trace condition

Tr

(

B−1∂ū

∂x̄

)

= 0, B = I + t
Dū

Dx̄
(x̄) (4.64)

holds. But

D~u

Dx̄
=
∂B

∂t
. (4.65)

Therefore div ~u = 0 if and only if

Tr

(

B−1∂B

∂t

)

= 0, (4.66)

or equivalently, if and only if

∂

∂t
(detB) = 0. (4.67)

This means that the Jacobian matrix Df(x̄) has to be a nilpotent one and takes the
form

Df(x̄) =





0 f 1
x̄2 f 1

x̄3

0 f 2
s −f 2

s

0 f 2
s −f 2

s



 , (4.68)
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where f 1 is an arbitrary function of two variables x̄2 and x̄3 and f 2 is an arbitrary
function of one variable s = x̄2− x̄3. Note that if f 1

x̄2 6= f 1
x̄3 then the Jacobian matrix

Df(x̄) has rank 2 (otherwise f 1 is any function of s and Df(x̄) has rank 1). As a
consequence, the matrix B has the form

B =





1 tf 1
x̄2 tf 1

x̄3

0 1 + tf 2
s −tf 2

s

0 tf 2
s 1 − tf 2

s



 , detB = 1. (4.69)

So, the condition (4.67) is identically satisfied. Thus, the general solution of system
(4.39) is implicitly defined by the equations

u1 = f 1
(

x2−tf 2(x2−x3), x3−tf 2(x2−x3)
)

, u2 = u3 = f 2(x2−x3), a = a0, (4.70)

where the functions f 1 and f 2 are arbitrary functions of their arguments. Equations
(4.70) define a rank-2 solution but, according to the formula for the corresponding
principle [10], it is not a double Riemann wave.

Obviously, other choices of the wave vectors λA (and the related vector fields
Xa) lead to different classes of solutions. The problem of the classification of these
solutions remains still open but some results are known (see e.g. the functorial
properties of systems of equations determining Riemann invariants [11]).

5 Conclusions

In this paper we have developed a new method which serves as a tool for constructing
rank-k solutions of multi-dimensional hyperbolic systems including Riemann waves
and their superpositions. The most significant characteristic of this approach is that
it allows us to construct regular algorithms for finding solutions written in terms
of Riemann invariants. Moreover, this approach does not refer to any additional
considerations, but proceeds directly from the given system of PDEs.

Riemann waves and their superposition described by multi-dimensional hyper-
bolic systems have been studied so far only in the context of the generalized method
of characteristics (GMC) [1, 10, 18]. The essence of this method can be summarized
as follows. It requires the supplementation of the original system of PDEs (1.1) with
additional differential constraints for which all first derivatives are decomposable in
the following form

∂uα

∂xi
(x) =

k
∑

A=1

ξA(x)γα
A(u)λA

i (u), (5.1)

where
(

∆µi
α(u)λA

i

)

γα
(A) = 0, A = 1, . . . , k

rank
(

∆µi
α(u)λA

i

)

< l.
(5.2)
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Here, ξA 6= 0 are treated as arbitrary scalar functions of x and we assume that
the vector fields {γ1, . . . , γk} are locally linearly independent. The necessary and
sufficient conditions for the existence of k-wave solutoins (when k > 1) of the system
(5.1) in terms of Riemann invariants impose some additional differential conditions
on the wave vectors λA and the corresponding vector fields γA, namely [18]

[γA, γB] ∈ span{γA, γB},

Lγβ
λA ∈ span{λA, λB}, ∀A 6= B = 1, . . . , k,

(5.3)

where [γA, γB] denotes the commutator of the vector fields γA and γB, LγB
denotes

the Lie derivatives along the vector fields γB.
Due to the homogeneity of the wave relation (5.2) we can choose, without loss

of generality, a holonomic system for the fields {γ1, . . . , γk} by requiring a proper
length for each vector γA such that

[γA, γB] = 0, ∀A 6= B = 1, . . . , k. (5.4)

It determines a k-dimensional submanifold S ⊂ U obtained by solving the system
of PDEs

∂fα

∂rA
= γα

A(f 1, . . . , fk) (5.5)

with solution π : F → U defined by

π : (r1, . . . , rk) →
(

f 1(r1, . . . , rk), . . . , f q(r1, . . . , rk)
)

. (5.6)

The wave vectors λA are pulled back to the submanifold S and then λA become
functions of the parameters r1, . . . , rk. Consequently, the requirements (5.1) and
(5.3) take the form

∂rA

∂xi
(x) = ξA(x)λA

i (r1, . . . , rk), (5.7)

∂λA

∂rB
∈ span{λA, λB}, ∀A 6= B = 1, . . . , k (5.8)

respectively. It has been shown [18] that the conditions (5.5) and (5.8) ensure
that the set of solutions of system (1.1) subjected to (5.1), depends on k arbitrary
functions of one variable. It has also been proved [17] that all solutions, i.e. the
general integral of the system (5.7) under conditions (5.8) can be obtained by solving,
with respect to the variables r1, . . . , rk, the system in implicit form

λA
i (r1, . . . , rk)xi = ψA(r1, . . . , rk), (5.9)

where ψA are arbitrary functionnally independent differentiable functions of k vari-
ables r1, . . . , rk. Note that solutions of (5.7) are constant on (p − k)-dimensional
hyperplanes perpendicular to wave vectors λA satisfying conditions (5.8).
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As one can observe, both methods discussed here exploit the invariance properties
of the initial system of equations (1.1). In the GMC, they have the purely geometric
character for which a form of solution is postulated by subjecting the original system
(1.1) to the side conditions (5.1). In contrast, in the case of the approach proposed
here we augment the system (1.1) by differential constraints (3.9).

There are, however, at least two basic differences between the GMC and our
proposed approach. Riemann multiple waves defined from (5.1), (5.5) and (5.8)
constitute a more limited class of solutions than the rank-k solutions postulated
by our approach. This difference results from the fact that the scalar functions ξA

appearing in expression (5.1) (which describe the profile of simple waves entering
into a superposition) are substituted in our case (see expressions (3.3) or (3.4)) with
a q by q or k by k matrix Φ1 or Φ2, respectively. This situation consequently allows
for a much broader range of initial data. The second difference consists in fact
that the restrictions (5.5) and (5.8) on the vector fields γA and λA, ensuring the
solvability of the problem by GMC, are not necessary in our approach. This makes
it possible for us to consider more general configurations of Riemann waves entering
into an interaction.

A number of different attempts to generalize the Riemann invariants method and
its various applications can be found in the recent literature on the subject (see e.g.
[4, 6, 7, 8, 22]). For instance, the nonlinear k-waves superposition u = f(r1, . . . , rk)
described in [16] can be regarded as dispersionless analogues to ”n-gap solution” of
(1.1) which require the resolution of a set of commuting diagonal systems for the
Riemann invariants rA, i.e.

rA
xi = µA

i(j)(r)r
A
xj , A = 1, . . . , k, i 6= j = 1, . . . , p. (5.10)

That specific technique involves differential constraints on the functions µA
ij of the

form [22]

∂jµ
A
i(j)

µA
i(j) − µA

j(i)

=
∂ju

B
i(j)

µB
i(j) − µB

j(i)

, i 6= j, A 6= B = 1, . . . , k, (5.11)

no summation. As in the case of Riemann k-waves if the system (5.11) is satisfied
for the functions µA

ij then the general integral of the system (5.10) can be obtained
by solving system (5.9) with respect to the variables r1, . . . , rk.

In contrast, our proposed approach does not require the use of differential equa-
tions (5.10) and therefore does not impose constraints on the functions µA

ij when the
1-forms λA are linearly independent and k < p.

However, if one removes these assumptions and λA can be linearly dependent and
k ≥ p then the approach presented in [7] is a valuable one and provides an effective
tool for classification criterion of integrable systems.

In order to verify the efficiency of our approach we have used it for constructing
rank-2 solutions of several examples of hydrodynamic type systems. The proposed
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approach proved to be a useful tool in the case of multi-dimensional hydrodynamic
type systems (1.1), since it leads to new interesting solutions.

The examples illustrating our method clearly demonstrate its usefulness as it
has produced several new and interesting results. Let us note that the outlined
approach to rank-k solutions lends itself to numerous potential applications which
arise in physics, chemistry and biology. It has to be stressed that for many physical
systems, (e.g. nonlinear field equations, Einstein’s equations of general relativity
and the equations of continuous media, etc) there have been very few, if any, known
examples of rank-k solutions. The approach proposed here offers a new and promis-
ing way to investigate and construct such type of solutions.
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