3,590 research outputs found

    Atomic oxygen beam source for erosion simulation

    Get PDF
    A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle

    Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Get PDF
    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions

    Characterization of a 5-eV neutral atomic oxygen beam facility

    Get PDF
    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm

    Study of aircraft in intraurban transportation systems, volume 1

    Get PDF
    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Choice Architecture to Improve Financial Decision Making

    Get PDF
    This is the author accepted manuscript. The final version is available from MIT Press via the DOI in this recordWe exploit the principles of choice architecture to evaluate interventions in the market for reloadable prepaid cards. Participants are randomized into three card menu presentation treatments - the market status quo, a regulation-inspired reform, or an enhanced reform designed to minimize attribute overload - and offered choices based on prior structural estimation of individual preferences. Consumers routinely choose incorrectly under the status quo, with tentative evidence the regulation-inspired presentation may increase best card choice, and clear evidence the enhanced reform reduces worst card choice. Welfare analysis suggests the regulation-inspired presentation offers modest gains, while the enhanced policy generates substantial benefits

    Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity

    Get PDF
    Demonstrated herein is a single rapid approach employed for synthesis of Ag–graphene nanocomposites, with excellent antibacterial properties and low cytotoxicity, by utilizing a continuous hydrothermal flow synthesis (CHFS) process in combination with p-hexasulfonic acid calix[6]arene (SCX6) as an effective particle stabilizer. The nanocomposites showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. The materials were characterized using a range of techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV–vis spectrophotometry, FT-IR, and X-ray powder diffraction (XRD). This rapid, single step synthetic approach not only provides a facile means of enabling and controlling graphene reduction (under alkaline conditions) but also offers an optimal route for homogeneously producing and depositing highly crystalline Ag nanostructures into reduced graphene oxide substrate

    Multimodal imaging measures predict rearrest

    Get PDF
    Rearrest has been predicted by hemodynamic activity in the anterior cingulate cortex (ACC) during error-processing (Aharoni et al., 2013). Here, we evaluate the predictive power after adding an additional imaging modality in a subsample of 45 incarcerated males from Aharoni et al. (2013). Event-related potentials (ERPs) and hemodynamic activity were collected during a Go/NoGo response inhibition task. Neural measures of error-processing were obtained from the ACC and two ERP components, the error-related negativity (ERN/Ne) and the error positivity (Pe). Measures from the Pe and ACC differentiated individuals who were and were not subsequently rearrested. Cox regression, logistic regression, and support vector machine (SVM) neuroprediction models were calculated. Each of these models proved successful in predicting rearrest and SVM provided the strongest results. Multimodal neuroprediction SVM models with out of sample cross-validating accurately predicted rearrest (83.33%). Offenders with increased Pe amplitude and decreased ACC activation, suggesting abnormal error-processing, were at greatest risk of rearrest

    Cyclooxygenase-2 inhibition decreases primary and metastatic tumor burden in a murine model of orthotopic lung adenocarcinoma

    Get PDF
    AbstractObjectiveTo assess cyclooxygenase-2 inhibition on primary tumor and mediastinal metastases in a murine model of orthotopic lung adenocarcinoma.MethodsHuman lung adenocarcinoma cells (CRL5908, female nonsmoker with cyclooxygenase-2 expression by Western blot) were implanted under direct visualization through the parietal pleura in the upper lobe of the left lung (2 × 106 cells/animal) of SCID mice. Mice were randomly assigned to 2 groups, either untreated (n = 62) or celecoxib-treated (n = 60). Celecoxib, a selective cyclooxygenase-2 antagonist, was solubilized in the animals' drink (25 mg/kg per day). Mice were arbitrarily killed at 1, 2, 3, and 4 weeks. A blinded observer assessed primary tumor volume and metastatic disease grossly and histologically.ResultsGross metastatic lymph nodes were present at 3 weeks in none of 15 (0%) treated and 12 of 15 (80.0%) untreated animals (P < .0001). Mean primary tumor volumes at 3 weeks for treated mice were 7.9 ± 10.0 mm3 and for untreated mice were 533.1 ± 453.6 mm3 (mean ± SD, P < .0001). Gross metastatic lymph nodes were present at 4 weeks in 3 of 15 (20%) treated and 17 of 17 (100%) untreated animals (P < .0001). Mean primary tumor volumes at 4 weeks for treated mice were 37.1 ± 46.2 mm3 and for untreated mice were 809.6 ± 1226.4 mm3 (mean ± SD, P < .0001). Mean blood levels of celecoxib in treated mice were 236.8 ± 34.2 ng/mL (mean ± SD).ConclusionsCyclooxygenase-2 inhibition results in decreased primary and metastatic tumor burden in a murine model using human lung adenocarcinoma. Cyclooxygenase-2 inhibition has the potential to decrease tumor progression and metastases in patients with lung adenocarcinoma

    High-Frequency Density Oscillations from a Plasma Source Used for Simulating Low-Earth Orbit Plasma Environment

    Get PDF
    We present data from ground-based, vacuum-chamber tests demonstrating the ability to modulate the output of a plasma source capable of producing a low-Earth orbit (LEO) type plasma. We obtained plasma oscillations up to 2.5 kHz impingent on stationary test equipment, which corresponds to meter-level ionospheric structures in LEO. This plasma source is, therefore, suitable for developing scientific instruments that measure the LEO plasma environment, in situ, with meter-level spatial resolution. Measurements were made using a fixed-bias collector and an electrometer sampling at 40 kHz. A mechanical aperture was established at the output of the plasma source via two concentric grids. The outer grid was free to rotate in the azimuthal direction with respect to the fixed inner grid. An identical, alternating hole pattern in the two grids resulted in a variable aperture that cycles through 90 open/close cycles per revolution. The frequency of the plasma oscillations is limited by the mechanism used to spin the grids and the bearing assembly on which the grids rotate. Higher frequencies are obtainable by upgrading the drive mechanism, allowing the possibility of centimeter-level spatial resolution
    • …
    corecore