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Multimodal imaging measures
predict rearrest
Vaughn R. Steele1*, Eric D. Claus1, Eyal Aharoni2, Gina M. Vincent3, Vince D. Calhoun1,4,5

and Kent A. Kiehl1,4*

1 Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA, 2 RAND
Corporation, Santa Monica, CA, USA, 3 University of Massachusetts Medical School, Worcester, MA, USA, 4 University of
New Mexico, Albuquerque, NM, USA, 5 Yale University School of Medicine, New Haven, CT, USA

Rearrest has been predicted by hemodynamic activity in the anterior cingulate cortex
(ACC) during error-processing (Aharoni et al., 2013). Here, we evaluate the predictive
power after adding an additional imaging modality in a subsample of 45 incarcerated
males from Aharoni et al. (2013). Event-related potentials (ERPs) and hemodynamic
activity were collected during a Go/NoGo response inhibition task. Neural measures of
error-processing were obtained from the ACC and two ERP components, the error-
related negativity (ERN/Ne) and the error positivity (Pe). Measures from the Pe and
ACC differentiated individuals who were and were not subsequently rearrested. Cox
regression, logistic regression, and support vector machine (SVM) neuroprediction
models were calculated. Each of these models proved successful in predicting rearrest
and SVM provided the strongest results. Multimodal neuroprediction SVM models
with out of sample cross-validating accurately predicted rearrest (83.33%). Offenders
with increased Pe amplitude and decreased ACC activation, suggesting abnormal
error-processing, were at greatest risk of rearrest.

Keywords: event-related potentials, functional magnetic resonance imaging, error-processing, neuroprediction,
recidivism

Introduction

The revolving door of post-incarceration recidivism poses an enormous strain on society with
68% of individuals rearrested and 47% reconvicted within 3 years of release (Langan and Levin,
2002). Successfully predicting future rearrest among convicted offenders could help identify risk-
factors related to reoffending. Once risk-factors have been identified, policy changes and behavioral
interventions could be implemented targeting those at greatest risk. Such policies could lead to
better interventions that may significantly reduce subsequent incidents of crime.

Subjective clinical predictions of future antisocial behavior (e.g., rearrest) have been shown to be
highly inaccurate (Monahan, 1981). Subsequent research using empirically derived static (e.g., age,
sex, criminal history) and dynamic (e.g., impulsivity, drug use, social support) risk factors have led
to significant improvements in predicting future antisocial behavior (Harris et al., 1993; Douglas
et al., 2002; Yang et al., 2010).

One of the strongest and most widely studied risk factors for recidivism is impulsivity or
behavioral disinhibition (Harris et al., 1993; Yang et al., 2010). Impulsivity, in this context, is
defined as the persistent lack of restraint and consideration of future consequences (Harris et al.,
1993). Researchers have measured impulsivity in the laboratory by implementing several types of
inhibition tasks (e.g., Go/NoGo, Stroop, Stop-signal, Flanker, Wisconsin Card Sorting Task, and
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Task-Switching: see Niendam et al., 2012 for review). A recent
functional magnetic resonance imaging (fMRI) study using a
Go/NoGo response inhibition task to measure cognitive control
and error-processing found hemodynamic activity from the
anterior cingulate cortex (ACC) measured during response
errors predicted subsequent rearrest better than behavioral
variables (Aharoni et al., 2013, 2014). Similarly, event-related
potentials (ERPs) have been shown to be sensitive to predicting
poor behavioral outcomes, including prediction of substance
abuse relapse (Bauer, 1997) and failure in substance abuse
treatment programs (Campanella et al., 2009; Anderson et al.,
2011; Steele et al., 2014b). Here, we seek to combine ERP
and fMRI measures to determine if multimodal neuroimaging
measures incrementally predict rearrest with the potential
of combining neuroimaging measures for more successful
classification.

Studies have shown the ACC to be integral in a greater
network related to cognitive control and error-processing (Carter
et al., 1998; Kiehl et al., 2000; Steele et al., 2013, 2014a). Localized
spatial resolution is an advantage of fMRI. In contrast, ERPs are
well suited to measure rapid temporal changes that may contain
important information that underlies impulse control abilities.
ERP studies have shown that after a response error is made, an
error-related negativity (ERN/Ne) is observed 50 ms post-error
(Falkenstein et al., 1991; Gehring et al., 1993). The ERN/Ne is
followed by an error positivity (Pe), peaking between 200 and
400 ms post-error (Falkenstein et al., 1991). The Pe is thought to
index further error-processing, conscious evaluation of the error,
response strategy adjustments, and/or affective assessment of the
error (Falkenstein et al., 1991; Nieuwenhuis et al., 2001; Overbeek
et al., 2005).

The ERN/Ne and Pe have been linked to cognitive control
and error-processing suggesting each could be potential neural
predictors of future antisocial behavior. Two competing, and
somewhat overlapping, theories have been proposed to explain
the underlying neural generators of cognitive control and error-
processing (Holroyd and Coles, 2002; Botvinick, 2007). Though
different predictions are made about specific cognitive processes
and inter-neural connections, both theories implicate the ACC as
a major player in cognitive control and error-processing. Neural
generators of the error-related ERN/Ne and Pe elicited by an
erroneous response (False Alarm) have been localized to the
caudal ACC (cACC) and rostral ACC (rACC; van Veen and
Carter, 2002; Edwards et al., 2012). Moreover, engagement of the
ACC during conflict events in healthy adults has been shown to
prospectively predict improvements in cognitive control (Kerns
et al., 2004). Recent findings also suggest greater Pe amplitude
(Steele et al., 2014b) and decreased ACC hemodynamic activity
(Aharoni et al., 2013) elicited by False Alarms are predictors of
poor future outcomes. Thus, cognitive components that engage
the ACC appear to have utility in predicting future antisocial
behaviors.

In the current study, neural activity was quantified using
high spatial resolution fMRI and high temporal resolution ERPs
and combined to index error-processes predictive of rearrest.
It was expected that ERP measures indexing cognitive control
and error-processing would enhance the previous findings that

fMRI measures of ACC activation predict future antisocial
behavior. To our knowledge, this is the first study to examine
the prospective neuroprediction of both ERPs and fMRI on
rearrest. Because ERN/Ne has been localized to the ACC and
ACC activation has been linked to rearrest, decreased ERN/Ne
amplitude also may be predictive of future antisocial behavior.
Given the association between increased Pe amplitude and poor
behavioral outcomes (Steele et al., 2014b), increased Pe amplitude
is hypothesized to help differentiate individuals who are and
are not rearrested. Multimodal neuroimaging measures of error-
monitoring and post-error processes are hypothesized to be
prospectively predictive of rearrest (using logistic regression and
pattern classification) over 4 years, and to the imminence of
rearrest (using Cox proportional hazards regression).

Materials and Methods

Participants
Participants were a subsample of a previously published fMRI
study (Aharoni et al., 2013) who also had separate-session ERP
data available. Forty-five adult male offenders ranging in age from
20 to 49 years (M = 32.7, SD= 7.88) with no history of significant
head injury were used in these analyses. Although these samples
overlap, ERP and fMRI allow for separate, unique interpretations
and contributions in the identification of neural predictors
of rearrest. Participants completed several psychological and
behavioral assessment measures and a Go/NoGo response
inhibition task prior to release from one of two New Mexico
state correctional facilities. They were subsequently released and
then tracked from 2007 to 2010. The average follow-up period
was 23.69 months (range: 1.51–49.55 months; see Aharoni et al.,
2013). Using the NIH racial and ethnic classification, 33% of the
sample self-identified as White, 7% as Black/African American,
11% as American Indian, 27% as Other, 40% as Hispanic, 38%
as not Hispanic, and 22% chose not to respond. Participants
were informed of their right to discontinue participation at any
point and that their participation was in no way associated with
their status at the facility or their parole status, and there were
no direct institutional benefits. They were paid $1 per hour,
a rate commensurate with standard pay for work assignments
at their facility. Participants provided written informed consent
in protocols approved by the institutional review board of the
University of New Mexico.

Assessments
Rearrest data, including arrest date and charge, were obtained
by a professional criminal background check service (SSC,
Inc.), which conducted national, state, and county criminal
searches following each participant’s release date. Approximately
53% of the sample was rearrested between their release date
(ranging from 2007 to 2010) and the follow-up date of
September, 2011. The outcome variable for Cox regression
analyses (described below) was the number of days between
release from incarceration and the follow-up date or the subject’s
rearrest date, whichever came first. Offense type was classified
into one of 27 common felony categories by 10 trained raters. In
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FIGURE 1 | Event-related potential (ERP) and functional magnetic
resonance imaging (fMRI) analysis of False Alarms. (A) Representative
ERP waveform plotted at Cz for each group. Negative is plotted up. Individuals
who were rearrested (solid red line) and not rearrested (dashed blue line) are
plotted. ERP components of interest (ERN/Ne and Pe) are identified.
(B) Topographical statistical difference (black and white) maps are plotted for
each component window highlighting individuals who were rearrested exhibited
increased Pe amplitude. Groups did not exhibit different ERN/Ne amplitudes.
(C) Grand average waveform plotted at Cz. (D) A five-component principal

component solution accounting for 93.59% of the variance. (E) Group average
waveforms for individuals who were rearrested (solid red line) and not rearrested
(dashed blue line are plotted ad Cz. (F) Topographical statistical (black and
white) maps are plotted for each principal component highlighting individuals
who were rearrested exhibited increased PC4 amplitude. (G) Hemodynamic
response differences between False Alarm and Hits contrast. Sagittal, coronal,
and axial slices are plotted centered at the ACC coordinate of interest, x = −3,
y = 24, z = 33. Family wise error p < 0.00001 was implemented to account for
multiple comparisons.

line with previous literature (Corrado et al., 2004), offenses were
classified as violent or non-violent offenses and minor parole
and probation violations were not included. Because very few
participants were rearrested for violent offenses (N = 8; 17.8%),
analyses were carried out on reoffense status rather than violent
offense status. Of the 45 individuals who had both ERP and fMRI
data, 24 were rearrested during the follow-up period.

Data from several additional potential risk factors were
obtained to examine the incremental predictive validity of the
ERP and fMRI measures. Behavioral indices of disinhibition
included scores from the Hare Psychopathy Checklist-Revised
(PCL-R; Hare, 2003), behavioral False Alarm rates calculated
separately for ERP and fMRI (defined as the proportion of
observed False Alarms out of total NoGo trials), age at release,
and lifetime prevalence of drug and alcohol abuse/dependence

(assessed using the Structured Clinical Interview for the
Diagnostic and statistical manual-IV: research version; SCID
I; First et al., 1997). Abuse and dependence were defined
by diagnostic scores of 2 and 3, respectively. An average
drug abuse/dependence measures was calculated with an
average score from the following drug classes: sedatives (11%
met for dependence), cannabis (53% met for dependence),
stimulants (53% met for dependence), opioids (22% met
for dependence), cocaine (62% met for dependence), and
hallucinogens (11% met for dependence). Over half (51%)
of participants met SCID criteria for alcohol dependence.
All of these variables are known predictors of antisocial
behavior in offender populations or are correlated with ACC
activity (Kerns et al., 2004; Monahan, 2008; Simmons et al.,
2008).
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Stimuli and Task
Behavioral impulsivity was measured using the Go/NoGo
response inhibition task, a widely used procedure that requires
participants to inhibit pre-potent motor responses. The
Go/NoGo task (Kiehl et al., 2000) consisted of two experimental
runs, each comprising 245 visual stimuli. The stimuli were
presented to participants using the computer-controlled visual
and auditory presentation software package, Presentation R©

(www.neurobs.com). Each stimulus appeared for 250 ms in
white text within a continuously displayed rectangular fixation
box. Participants were instructed to respond as “quickly and
accurately as possible” with their right index finger every time
the target (“Go”) stimulus (a white “X”) appeared, and to
withhold a response when the distracter “No/Go” stimuli (a
white “K”) appeared. Targets appeared with higher frequency
(84%; 412 trials; 206 for each run) to establish a strong stimulus-
response mapping on “Go” trials. Two K’s were never presented
sequentially. The stimuli were approximately 3× 5 visual degrees
on a black background. The interstimulus interval was jittered
(1–3 s stimulus onset asynchrony; averaging 1.5 s). Prior to
recording, each participant performed a block of 10 practice
trials to ensure that the instructions were clearly understood. The
standard onset asynchrony (SOA) between Go stimuli varied
pseudo-randomly between 1000, 2000 and 3000 ms, subject to
the constraint that three Go stimuli were presented within each
consecutive 6 s period. The NoGo stimuli were interspersed
among the Go stimuli in a pseudorandom manner subject to
three constraints: the minimum SOA between a Go and NoGo
stimulus was 1000 ms; the SOA between successive NoGo stimuli
was in the range 8–14 s. The same task procedures were used in
both ERP and fMRI data collection.

Data Acquisition
Magnetic resonance image acquisition parameters were discussed
previously (Aharoni et al., 2013) and are only briefly outlined
here. Images were collected with a mobile Siemens 1.5T Avanto
with advanced SQ gradients (max slew rate 200 T/m/s 346
T/m/s vector summation, rise time 200 us) equipped with a 12
element head coil. The EPI gradient-echo pulse sequence (TR/TE
2000/39 ms, flip angle 75◦, FOV 24 cm× 24 cm, 64 × 64 matrix,

3.4 mm × 3.4 mm in plane resolution, 5 mm slice thickness, 30
slices) effectively covers the entire brain (150 mm) in 2000 ms.
Head motion was limited using padding and restraint.

Electrophysiological data were collected in a separate session
that the fMRI data collection using two Windows-compatible
computers and a 64-channel BioSemi ActiveTwo amplifier. The
first computer used Presentation R© software (www.neurobs.com)
to deliver the stimuli, accept responses, and send digital triggers
to the other computer indicating when a stimulus or response
occurred. The second computer acquired physiological data
using BioSemi software and amplifier. All signals collected with
this BioSemi system were low-pass filtered using a fifth order
sinc filter with a half-power cutoff of 204.8 Hz then digitized at
1024 Hz during data collection. Electroencephalography (EEG)
activity was recorded using sintered Ag–AgCl active electrodes
placed in accordance with the 10–20 International System (Jasper,
1958). The participant’s nose was used as the reference. Six
electrodes were placed on the participants face to measure
electro-oculogram. These electrodes were placed above, below,
and on the canthus of each eye. All offsets were kept below 10 k�.

Data Reduction
Functional images were reconstructed offline at 16-bit
resolution and manually reoriented to approximately the
anterior commissure/posterior commissure (AC/PC) plane.
Functional images were spatially normalized to the Montreal
Neurological Institute (MNI) template via a nine-parameter
affine transformation using smooth basis functions to account
for non-linear differences, and spatially smoothed (8 mm
full-width half maximum) in SPM5. High frequency noise
was removed using a low-pass filter (cutoff – 128 s). Response
types (Hits and False Alarms) were modeled as separate
events. Event-related responses were modeled using a synthetic
hemodynamic response function composed of two gamma
functions. The first gamma function modeled the hemodynamic
response using a peak latency of 6 s. A term proportional to the
derivative of this gamma function was included to allow for small
variations in peak latency. The second gamma function and
associated derivative was used to model the small “overshoot”
of the hemodynamic response on recovery. A latency variation

TABLE 1 | Descriptive statistics and independent samples t-tests for variables used as covariates.

All participants (N = 45) Rearrested group (N = 24) Not-rearrested group (N = 21)

Variable N Mean SD N Mean SD N Mean SD t df p

Age at release 45 33.69 8.08 24 31.58 7.32 21 36.10 8.40 1.93 43 0.061

PCL-R-F1 42 7.64 3.26 22 7.55 3.49 20 7.74 3.07 0.18 40 0.853

PCL-R-F2 42 14.31 3.79 22 15.17 3.39 20 13.36 4.05 1.69 40 0.099

Drug abuse/dependence (Lifetime) 44 2.89 1.30 23 2.91 1.28 21 2.86 1.35 −0.14 42 0.888

Alcohol abuse/dependence (Lifetime) 44 2.27 0.85 23 2.22 0.85 21 2.33 0.86 0.45 42 0.655

NoGo accuracy (ERP) 45 77% 0.13 24 74% 0.15 21 80% 0.10 1.58 43 0.123

NoGo accuracy (fMRI) 45 74% 0.14 24 70% 0.15 21 78% 0.11 1.86 43 0.069

All participants (N = 45) either subsequently rearrested or not rearrested. Individuals in the rearrested group (N = 24) include adult male offenders who were rearrested
within the follow-up period. Individuals in the not rearrested group (N = 21) include adult male offenders who were not rearrested within the follow-up period. PCL-R-F1
and PCL-R-F2 are factor scores derived from the Hare Psychopathy Checklist-Revised (PCL-R; Hare, 2003). Factor 1 is a measure of 13 interpersonal and affective traits.
Factor 2 is a measure of antisocial and impulsive traits.
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amplitude-correction method was used to provide a more
accurate estimate of hemodynamic response for each condition
that controlled for differences between slices in timing and
variation across regions in the latency of the hemodynamic
response (Calhoun et al., 2004).

Functional images were computed for each participant
that represented hemodynamic responses associated with False
Alarms and Hits. General linear models included regressors to
model motion (six parameters). Activation difference between
False Alarms and Hits was extracted from a 14 mm radius
sphere centered in the ACC (−3, 24, 33; Figure 1). This ACC
coordinate has been previously identified (Kiehl et al., 2000; Steele
et al., 2014a) and was the same coordinate used to predict future
rearrest (Aharoni et al., 2013).

Electroencephalography data pre-processing steps included
down sampling to 512 Hz, bad channel detection and
replacement, epoching, and eye-blink removal. Bad channels
were identified as having activity four standard deviations away
from the mean of all electrodes placed on the scalp. These
channels were replaced using the mean of surrounding scalp
electrodes. ERP epochs were defined in relation to responses,
from 1000 ms pre- to 2000 ms post-response. The epoched
data were eye-blink corrected using an independent component
analysis (ICA) technique. The ICA utility in the EEGLab software
(Delorme and Makeig, 2004) was used to derive components
then, using an in-house template matching algorithm (Jung et al.,
2000), blink components were identified and removed from
the data. Individual subject ICA decompositions where no eye-
blinks were identified and removed were visually inspected to
identify eye-blink components which, when present, were then
removed.

TABLE 2 | Summary of linear regression analysis of principal components
predicting windowed time-domain (TD) components (N = 45).

Predictors B SE B β

Regression 1

DV ERN/Ne mean

PC1 mean 12.806 4.384 0.538∗

PC2 mean −2.547 3.612 −0.219

PC3 mean −0.423 2.904 −0.041

PC4 mean 4.458 2.569 0.306∧

PC5 mean 1.595 2.815 0.125

Regression 2

DV Pe mean

PC1 mean 7.442 6.166 0.136

PC2 mean 4.075 3.630 0.218

PC3 mean 4.326 2.791 0.291

PC4 mean 10.300 2.846 0.474∗

PC5 mean −2.684 3.725 −0.103

Regression 1: R2.30 R.55 (p = 0.013); Regression 2: R2.65 R.81 (p < 0.001).
ERN/Ne is the mean amplitude of the error-related negativity (ERN/Ne) ERP
component measured at FCz for responses to NoGo stimuli; Pe is the mean
amplitude of the error-related positivity (Pe) ERP component measured at CPz for
responses to NoGo stimuli. Principal components used to predict TD components
were measured at the corresponding electrode for responses to NoGo stimuli.
∧p < 0.10, ∗p < 0.05.

The ERN/Ne component window was defined as the negative
deflection that occurred between −100 ms to 115 ms relative
to a False Alarm. The Pe component window was defined
as the positive deflection that occurred between 75 and
500 ms relative to a False Alarm (Figure 1). These ERP
components were defined to best fit these data and were
baseline corrected using a −200 ms to −110 ms window,
relative to a False Alarm. Within each trial, individual electrodes
in which activity exceeded ± 100 μV were omitted from
analyses. Applying these criteria, 15.12% of electrode trials
were excluded. ERN/Ne amplitude was maximal at FCz
and Pe amplitude was maximal at CPz. Therefore, these
electrodes were selected as most representative of ERN/Ne and
Pe related activations and used in subsequent analyses. An
additional data reduction method, principal component analysis
(PCA; Chapman and McCarry, 1995), was also performed
on False Alarm trials. This method is optimal for ERP data
analysis because classic windowed component time-domain (TD)
measures of ERP are inadequate at separating the inherently
overlapping ERP components (Dien et al., 2007). We have
previously used this method (Steele et al., 2014b) and highlight
PCA measures are more sensitive in predicting outcomes in
similar models as presented here. A five-component solution
was extracted (Figure 1) which accounted for 93.59% of the
variance.

Data Analysis
Three analytical approaches were used to prospectively predict
rearrest: (1) Cox proportional hazards regressions were used
to predict time to rearrest. Cox regression takes ‘time at
risk’ into account by using time to rearrest as the outcome
variable, calculated as the number of days between release
from incarceration and the rearrest date, or the follow-up date
(September 2011) for those who were not rearrested. Those who
were not rearrested are included in the analyses and considered
to be ‘censored’ cases, meaning they potentially could still
reoffend, accounting for variable lengths of follow-up. Reliability
of the Cox regressions was assessed by using bootstrapping
with 9,999 iterations; (2) Logistic regressions were used to test
linear combinations of variables in identifying the occurrence
of a rearrest, without taking time at risk into account. A binary
outcome variable of rearrested or not rearrested between release
from incarceration and follow-up date was used. Measures of
overall performance, sensitivity specificity, and area under the
curve were calculated for each logistic model. Participants were
classified using leave-one-out cross-validation; (3) Support vector
machines (SVMs; i.e., pattern classifiers) were used to test non-
linear combinations of variables in identifying the occurrence of
rearrest. A binary outcome variable of rearrested or not rearrested
between release from incarceration and follow-up date was used.
Measures of overall performance, sensitivity, and specificity were
calculated for each SVM model. SVMs are especially beneficial
when data classes are heterogeneous with few training samples
(Melgani and Bruzzone, 2004). This binary classifier finds a
hyperplane that maximizes the margin between two classes.
Participants were classified using two nested leave-one-out cross-
validations. In each iteration, one participant is selected as the
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TABLE 3 | Zero-order Cox and logistic regressions with ERN/Ne, Pe, PC1, PC4, and ACC activation predicting rearrest (N = 45).

(A)

Model −2 Log
likelihood

Overall Change from previous

χ2 df p-value �χ2 df p-value

(A) ERN/Ne 160.35 0.28 1 0.597 0.29 1 0.588

(B) Pe 155.81 4.88 1 0.027∗ 4.83 1 0.028∗

(C) PC1 159.94 0.67 1 0.413 0.71 1 0.400

(D) PC4 154.06 6.55 1 0.010∗ 6.59 1 0.010∗

(E) ACC 158.75 1.97 1 0.161 1.90 1 0.169

Omnibus test of Cox regression Model with Chi-square statistics (χ2) showing the zero-order effect of mean ERN/Ne (A), Pe (B), PC1 (C), PC4(D), and ACC (E) activity
on months to rearrest.

(B)

Model B SE (B) p-value exp[B] CI (95%) for exp[B] −2 Log likelihood Cox and Snell R2 Nagelkerke R2

(A) ERN/Ne 0.07 0.07 0.363 1.07 0.93–1.23 59.87 (0.32) 0.02 (<0.001) 0.02 (0.001)

(B) Pe 0.15 0.06 0.022∗ 1.16 1.02–1.31 53.84 (0.95) 0.14 (0.003) 0.19 (0.005)

(C) PC1 −0.62 1.68 0.702 0.57 0.02–16.09 60.61 (0.18) 0.002 (0.002) 0.003 (0.003)

(D) PC4 4.22 1.61 0.009∗ 82.45 3.05–2712.0 50.77 (1.30) 0.20 (0.006) 0.27 (0.008)

(E) ACC −0.54 0.38 0.157 0.58 0.28–1.22 58.56 (0.50) 0.05 (0.001) 0.06 (0.002)

Omnibus test of logistic regression, with cross-validation, model showing the zero-order effect examining the predictive effect of ERN/Ne (A), Pe (B), PC1 (C),
PC4(D), and ACC (E) on rearrest. −2 Log likelihood, Cox and Snell, and Nagelkerke are presented for each model with standard deviations presented in
parentheses. (A) Model χ2(1) = 0.86 (SD = 0.04), p = 0.354. Classification of rearrested: 70.83% (17 of 24); not rearrested: 28.57% (6 of 21); overall 51.11% (23
of 45). AUC = 0.497. (B) Model χ2(1) = 6.99 (SD = 0.19), p = 0.008. Classification of rearrested: 66.67% (16 of 24); not rearrested: 57.14% (12 of 21); overall 62.22%
(28 of 45). AUC = 0.619. (C) Model χ2(1) = 0.09, p = 0.757. Classification of rearrested: 79.17% (19 of 24); not rearrested: 0.00% (0 of 21); overall 42.22% (19 of
45). AUC = 0.396. (D) Model χ2(1) = 10.10, p = 0.002. Classification of rearrested: 75.00% (18 of 24); not rearrested: 57.14% (12 of 21); overall 66.67% (30 of 45).
AUC = 0.661. (E) Model χ2(1) = 2.19, p = 0.139. Classification of rearrested: 66.67% (16 of 24); not rearrested: 42.86% (9 of 21); overall 55.56% (25 of 45). AUC = 0.548.
∗p < 0.05; AUC = area under the curve.

testing sample and the rest as training samples (first leave-one-
out). To select the best parameter for the SVM classifier, a
grid search was performed over parameters C and σ. C is the
value of the box constraint for the soft margin and σ is the
scaling factor of the rbf kernel. Values for C were in this set
{C = 2∧ −9, 2∧ −8.5. . .2∧ −4} and values for σ were in this set
{σ = 2∧−2, 2∧−1.5. . .2∧4}. The classification rate was measured
for each parameter set using another leave-one-out validation
inside the training set. The best C and σ were identified by
the model that produced the greatest combination of sensitivity
and specificity. After selecting the best parameter, the left out
testing sample was classified. Matlab version 7.12.0 (R2011a)
was used to implement the svmtrain and svmclassify functions
and a Gaussian radial basis function (rbf) kernel to develop
these classification models.Within eachmodel, the variables were
z-scored to standardize across the variable set. This procedure
(using two nested leave-one-out) avoids any use of training data
in model selection or model training, which is crucial in any
classification problem. This method has been used successfully
with other datasets in our laboratory (Cope et al., 2014; Steele
et al., 2014b).

Four models were calculated for each of the analytical
approaches used to prospectively predict rearrest described
above: Model 1 included ERP measures (either TD or principal
component measures of ERN/Ne and Pe), and all covariates
(age at release, PCL-R Factor 1, PCL-R Factor 2, drug
abuse/dependence, and alcohol abuse/dependence measures;

Table 1); Model 2 included ACC activation and all covariates;
Model 3 included ERP measures, ACC activation, and all
covariates; Model 4 included ERP measures and ACC activation.
These four models were designed to best identify the unique
and overlapping contributions of the neural measures of
error-processing in predicting rearrest. Using three analytical
approaches with four models allowed for analysis of both a binary
(i.e., were or were not rearrested) and a continuous (i.e., time
to rearrest) outcome. The outcomes of these analyses should
ultimately influence future attempts at prospectively predicting
when and if rearrest is likely.

Results

Behavioral, fMRI measures, ERP component windowed TD,
and PCA measures for False Alarms were included, along with
the additional covariates described above, in Cox proportional
hazards regressions, logistic regressions, and SVMmodels. Zero-
order effects of neural measures (ERP and fMRI) of error-
monitoring and post-error processing were initially calculated
for each analysis model before adding all covariates. Because the
ERP TD and PCA measures are each derived from the same
neural signal, separate TD and PCA models were calculated.
To identify which principal component accounts for which ERP
windowed TDmeasure (ERN/Ne and Pe), linear regressions were
performed using the five principal components predicting TD
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TABLE 4 | Cox regression combining ERP or fMRI measures with covariates predicting rearrest (N = 45).

(A)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

Age at release −0.05 −0.05 0.04 0.05 0.195 0.95 0.89–1.03 0.86–1.03

PCL-R factor 1 −0.26 −0.26 0.11 0.14 0.022∗ 0.77 0.62–0.96 0.54–0.93

PCL-R factor 2 −1.37 −1.37 0.46 0.56 0.003∗ 0.25 0.10–0.62 0.05–0.49

Drug 0.20 0.20 0.24 0.27 0.404 1.22 0.76–1.96 0.76–2.24

Alcohol −0.31 −0.31 0.29 0.40 0.281 0.73 0.41–1.29 0.29–1.46

ERN/Ne 0.01 0.01 0.06 0.09 0.931 1.01 0.89–1.14 0.86–1.21

Pe 0.09 0.09 0.04 0.06 0.024∗ 1.10 1.01–1.19 1.02–1.27

Results of Cox regression analyses examining the predictive effect of the activation accounted for ERP component measures and other covariates on rearrest.

(B)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

Age at release −0.05 −0.05 0.04 0.05 0.137 0.95 0.88–1.02 0.85–1.02

PCL-R factor 1 −0.27 −0.27 0.11 0.14 0.013∗ 0.76 0.62–0.95 0.53–0.91

PCL-R factor 2 −1.58 −1.58 0.49 0.63 0.001∗ 0.20 0.08–0.54 0.03–0.39

Drug 0.10 0.10 0.24 0.28 0.683 1.10 0.69–1.75 0.64–1.99

Alcohol −0.34 −0.34 0.28 0.40 0.230 0.71 0.41–1.24 0.28–1.36

PC1 −0.85 −0.85 1.50 1.96 0.571 0.43 0.02–8.07 0.01–10.98

PC4 2.29 2.29 0.80 1.29 0.004∗ 9.84 2.04–47.48 2.17–334.95

Results of Cox regression analyses examining the predictive effect of the activation accounted for principal components derived from ERP measures and other
covariates on rearrest.

(C)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

Age at release −0.07 −0.07 0.04 0.04 0.034∗ 0.93 0.87–0.99 0.83–0.99

PCL-R factor 1 −0.16 −0.16 0.11 0.13 0.147 0.85 0.69–1.06 0.63–1.04

PCL-R factor 2 −0.93 −1.93 0.45 0.50 0.039∗ 0.39 0.16–0.95 0.11–0.80

Drug 0.20 0.20 0.21 0.26 0.352 1.22 0.80–1.86 0.76–2.14

Alcohol −0.14 −0.14 0.30 0.40 0.633 0.87 0.49–1.55 0.38–1.89

ACC −0.53 −0.53 0.29 0.41 0.066∧ 0.59 0.34–1.04 0.22–1.12

Results of Cox regression analyses examining the predictive effect of the activation accounted for ACC activation and other covariates on rearrest.
∧p < 0.10; ∗p < 0.05.

components. ERP models included either TD or PCA measure
or the ACC activity measured during fMRI data collection.
Effects that did not reach statistical trend (p > 0.10) are not
reported.

Consistent with prior studies, response times measured in
both ERP and fMRI for False Alarms (ERP: M = 333 ms,
SD = 46 ms; fMRI: M = 359 ms, SD = 44 ms) were faster
than for Hits (ERP: M = 659, SD = 55 ms; fMRI: M = 599 ms,
SD = 42 ms), t(44) = 25.01, p < 0.001, t(44) = 64.44,
p < 0.001, respectively. Participants also were more accurate
to Go (ERP: 98%; fMRI: 98%) than NoGo (ERP: 77%; fMRI:
74%) trials, t(44) = 9.66, p < 0.001, t(44) = 11.60, p < 0.001,
respectively.

About half of the sample (N = 24) was rearrested during
the 4-years follow-up period. The group that was rearrested
was marginally younger, t(43) = 1.93, p = 0.061, scored
higher on PCL-R Factor 2, t(40) = 1.69, p = 0.099, and
made more False Alarms in the fMRI task, t(43) = 1.86,

p = 0.069, than the group that was not rearrested. The
groups did not differ on the other behavioral measures or
other covariates used in analyses below (see Table 1). The
outcome variable for Cox regression (days to rearrest or
days to follow-up date for those who were not rearrested),
was shorter for the rearrested group (M = 11.89 months,
SD = 10.77 months, range: 1.51–11.89 months) than the non-
rearrested group (M = 34.02 months, SD = 9.19 months,
range: 10.38–49.55 months), t(43) = 7.44, p < 0.001. This
outcome variable was marginally correlated with ACC activation,
r = 0.256, p = 0.090, but not other variables used in the models
below (r’s < 0.23).

Regressions
To identify which principal component best describes each ERP
component, linear regressions were computed predicting mean
TD (i.e., ERN/Ne and Pe) amplitudes with the five principal
components (see Figure 1 for TD and PCA representations
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TABLE 5 | Cox regression with ERP, fMRI, and covariates predicting rearrest (N = 45).

(A)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

Age at release −0.06 −0.06 0.04 0.05 0.118 0.94 0.87–1.02 0.82–1.01

PCL-R factor 1 −0.21 −0.21 0.12 0.15 0.080∧ 0.85 0.63–0.1.03 0.55–1.01

PCL-R factor 2 −1.23 −1.23 0.48 0.60 0.011∗ 0.29 0.11–0.75 0.06–0.58

Drug 0.18 0.18 0.25 0.29 0.440 1.20 0.76–1.91 0.70–1.82

Alcohol −0.22 −0.22 0.31 0.45 0.484 0.81 0.44–1.48 0.31–1.92

ERN/Ne 0.01 0.01 0.07 0.09 0.860 1.01 0.89–1.15 0.86–1.23

Pe 0.08 0.08 0.04 0.06 0.063∧ 1.08 1.00–1.18 0.99–1.26

ACC −0.30 −0.30 0.31 0.46 0.334 0.74 0.40–1.37 0.26–1.58

Results of Cox regression analyses examining the predictive effect of the activation accounted for ERP component measures, ACC activation, and other covariates on
rearrest.

(B)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

Age at release −0.06 −0.06 0.04 0.05 0.137 0.94 0.87–1.02 0.84–1.02

PCL-R factor 1 −0.25 −0.25 0.12 0.16 0.013∗ 0.78 0.61–0.98 0.51–0.96

PCL-R factor 2 −1.53 −1.53 0.52 0.70 0.001∗ 0.22 0.08–0.60 0.03–0.44

Drug 0.10 0.10 0.22 0.30 0.683 1.10 0.70–1.74 0.64–2.04

Alcohol −0.30 −0.30 0.31 0.45 0.230 0.74 0.40–1.36 0.27–1.57

PC1 −1.00 −1.00 1.57 2.08 0.571 0.37 0.02–7.99 0.003–10.54

PC4 2.10 2.10 0.98 1.42 0.004∗ 8.13 1.19–55.36 1.32–336.17

ACC −0.12 −0.12 0.37 0.51 0.066∧ 0.89 0.43–1.83 0.31–2.33

Results of Cox regression analyses examining the predictive effect of the activation accounted for principal components derived from ERP measures, ACC activation,
and other covariates on rearrest.

(C)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

ERN/Ne −0.01 0.01 0.05 0.06 0.843 0.99 0.89–1.10 0.87–1.13

Pe 0.68 0.68 0.03 0.04 0.031∗ 1.08 1.01–1.14 1.00–1.17

ACC −0.27 −0.27 0.21 0.27 0.200 0.76 0.50–1.16 0.43–1.25

Results of Cox regression analyses examining the predictive effect of the activation accounted for ERP component measures and ACC activation on rearrest.

(D)

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-value exp[B] CI (95%) for
exp[B]

Boot-strapped CI
(95%) for exp[B]

PC1 −0.63 −0.63 1.17 1.39 0.591 0.53 0.05–5.28 0.03–7.48

PC4 1.46 1.46 0.70 0.91 0.039∗ 4.29 1.08–17.04 0.91–32.30

ACC −0.18 −0.18 0.23 0.27 0.421 0.83 0.54–1.30 0.47–1.40

Results of Cox regression analyses examining the predictive effect of the activation accounted for principal components derived from ERP measures and ACC activation
on rearrest.
∧p < 0.10; ∗p < 0.05.

of these data). Mean ERN/Ne amplitude was predicted by
principal component 1 (PC1), p = 0.006, and principal
component 4 (PC4) was a marginal predictor, p = 0.091
(Table 2). Mean Pe amplitude was predicted by PC4, p = 0.001
(Table 2). Therefore, separate analyses were carried out using
TD measures (ERN/Ne and Pe) and principal component
measures (PC1 and PC4) as neural measures of error-
monitoring (ERN/Ne and PC1) and post-error processing (Pe
and PC4).

Prediction Models
Cox regressions were computed to identify variables useful in
predicting time to rearrest. Zero-order effects calculated for Cox
regressions predicting rearrest with ERP TD, ERP PCA, and
ACC activation measures were first computed. Only Pe and PC4,
not ERN/Ne, PC1 or ACC activation, were significant predictors
of rearrest (Table 3). When additional covariates were added
to the models, Pe and PC4 remained significant and age at
release, PCL-R Factor 1, PCL-R Factor 2, and ACC activation
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TABLE 6 | Logistic regressions combining ERP and fMRI with covariates
predicting rearrest (N = 45).

(A)

Predictor B SE (B) p-value exp[B] CI (95%) for
exp[B]

Age at release −0.02 0.06 0.762 0.98 0.88–1.10

PCL-R factor 1 −0.24 0.16 0.147 0.79 0.57–1.08

PCL-R factor 2 −1.67 0.84 0.048∗ 0.19 0.04–0.98

Drug 0.07 0.37 0.819 1.08 0.52–2.25

Alcohol −0.48 0.53 0.373 0.62 0.22–1.76

ERN/Ne −0.0006 0.10 0.895 1.00 0.82–1.22

Pe 0.17 0.09 0.050∗ 1.18 1.00–1.40

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in TD ERP components, and other covariates on
rearrest. −2 Log likelihood = 41.48 (SD = 1.28), Cox and Snell R2 = 0.28
(SD = 0.009); Nagelkerke R2 = 0.38 (SD = 0.012); Model χ2(7) = 13.69,
p = 0.058. Classification of rearrested: 66.67% (14 of 21); not rearrested:
55.00% (11 of 20); overall 60.98% (25 of 41). AUC = 0.608.

(B)

Predictor B SE (B) p-value exp[B] CI (95%) for
exp[B]

Age at release −0.03 0.06 0.600 0.97 0.86–1.09

PCL-R factor 1 −0.24 0.18 0.165 0.78 0.56–1.10

PCL-R factor 2 −2.26 0.97 0.020∗ 0.11 0.02–0.69

Drug 0.07 0.39 0.834 1.08 0.50–2.35

Alcohol −0.71 0.59 0.235 0.50 0.16–1.56

PC1 −0.26 2.49 0.877 1.57 0.01–339.98

PC4 6.23 2.38 0.009∗ 1712.50 5.28–2015200

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in ERP principal components and other covariates
on rearrest. −2 Log likelihood = 35.53 (SD = 1.76), Cox and Snell R2 = 0.38
(SD = 0.014); Nagelkerke R2 = 0.51 (SD = 0.019); Model χ2(7) = 19.68,
p = 0.007. Classification of rearrested: 66.67% (14 of 21); not rearrested:
60.00% (12 of 20); overall 63.41% (26 of 41). AUC = 0.633.

(C)

Predictor B SE (B) p-value exp[B] CI (95%) for
exp[B]

Age at release −0.09 0.05 0.105 0.92 0.82–1.02

PCL-R factor 1 −0.06 0.16 0.706 0.94 0.69–1.28

PCL-R factor 2 −0.91 0.64 0.162 0.40 0.12–1.42

Drug 0.02 0.36 0.886 1.02 0.50–2.08

Alcohol −0.07 0.51 0.851 0.94 0.35–2.54

ACC −0.98 0.58 0.093∧ 0.38 0.12–1.17

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in the ACC and other covariates on rearrest. −2 Log
likelihood = 44.91 (SD = 1.24), Cox and Snell R2 = 0.22 (SD = 0.008); Nagelkerke
R2 = 0.30 (SD = 010); Model χ2(6) = 10.26, p = 0.115. Classification of
rearrested: 61.90% (13 of 21); not rearrested: 55.00% (11 of 20); overall 58.54%
(24 of 41). AUC = 0.585.
∧p < 0.10; ∗p < 0.05; AUC = area under the curve.

were significant or marginally significant (Tables 4 and 5). While
accounting for other covariates and ACC activation, PC4 was
the greatest predictor of time to rearrest in that for every unit
increase in amplitude, the probability of rearrest increased 8.13
times, p = 0.004 (Table 5B). Interestingly, PC4 remained the

TABLE 7 | Logistic regressions combining ERP, fMRI, and covariates
predicting rearrest (N = 45).

(A)

Predictor B SE (B) p-value exp[B] CI (95%) for exp[B]

Age at release −0.04 0.06 0.565 0.97 0.85–1.09

PCL-R factor 1 −0.16 0.17 0.376 0.85 0.61–1.20

PCL-R factor 2 −1.58 0.86 0.069∧ 0.21 0.04–1.11

Drug −0.02 0.40 0.882 0.99 0.45–2.17

Alcohol −0.28 0.57 0.613 0.76 0.25–2.36

ERN/Ne −0.02 0.10 0.841 0.98 0.80–1.21

Pe 0.16 0.09 0.076∧ 1.18 0.99–1.41

ACC −0.75 0.62 0.235 0.48 0.14–1.60

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in TD ERP components, the ACC, and other
covariates on rearrest. −2 Log likelihood = 39.80 (SD = 1.46), Cox and Snell
R2 = 0.31 (SD = 0.013); Nagelkerke R2 = 0.41 (SD = 0.018); Model
χ2(8) = 15.23, p = 0.057. Classification of rearrested: 61.90% (13 of 21); not
rearrested: 60.00% (12 of 20); overall 60.98% (25 of 41). AUC = 0.610.

(B)

Predictor B SE (B) p-value exp[B] CI (95%) for exp[B]

Age at release −0.05 0.06 0.495 0.96 0.84–1.09

PCL-R factor 1 −0.18 0.20 0.366 0.84 0.57–1.23

PCL-R factor 2 −2.17 0.99 0.028∗ 0.12 0.02–0.79

Drug 0.01 0.41 0.902 1.01 0.45–2.28

Alcohol −0.57 0.61 0.357 0.57 0.17–1.87

PC1 0.09 2.58 0.905 1.34 0.01–369.55

PC4 5.97 2.43 0.015∗ 1625 3.77–2668700

ACC −0.53 0.74 0.478 0.59 0.15–2.50

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in ERP principal components, the ACC, and other
covariates on rearrest. −2 Log likelihood = 34.96 (SD = 1.82), Cox and Snell
R2 = 0.39 (SD = 0.16); Nagelkerke R2 = 0.52 (SD = 0.021); Model
χ2(8) = 20.17, p = 0.011. Classification of rearrested: 61.90% (13 of 21); not
rearrested: 60.00% (12 of 20); overall 60.98% (25 of 41). AUC = 0.610.

(C)

Predictor B SE (B) p-value exp[B] CI (95%) for exp[B]

ERN/Ne 0.008 0.09 0.880 1.01 0.84–1.21

Pe 0.13 0.07 0.055∧ 1.14 1.00–1.30

ACC −0.61 0.45 0.183 0.54 0.23–1.32

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in TD ERP components and the ACC on rearrest. −2
Log likelihood = 47.24 (SD = 0.98), Cox and Snell R2 = 0.18 (SD = 0.005);
Nagelkerke R2 = 0.24 (SD = 0.007); Model χ2 (3) = 8.13, p = 0.044.
Classification of rearrested: 61.90% (13 of 21); not rearrested: 60.00% (12 of
20); overall 60.98% (25 of 41). AUC = 0.610.

(D)

Predictor B SE (B) p-value exp[B] CI (95%) for exp[B]

PC1 −0.22 1.96 0.866 0.98 0.02–78.58

PC4 2.40 1.62 0.038∗ 38.31 1.32–1436.42

ACC −0.47 0.45 0.306 0.63 0.26–1.52

Results of logistic regression analyses examining the predictive effect of the
activation accounted for in ERP principal components and the ACC on rearrest.
−2 Log likelihood = 46.62 (SD = 1.22), Cox and Snell R2 = 0.19 (SD = 0.01);
Nagelkerke R2 = 0.25 (SD = 0.01); Model χ2(3) = 8.67, p = 0.035. Classification
of rearrested: 66.67% (14 of 21); not rearrested: 65.00% (13 of 20); overall 65.85%
(27 of 41). AUC = 0.658.
∧p < 0.10; ∗p < 0.05; AUC = area under the curve.
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only unique predictor when only ERP and fMRI measures were
included in the model, p = 0.039 (Table 5D). Bootstrapped
Cox regression results suggest these models to be relatively
stable.

Logistic regressions were computed to identify variables
useful in predicting who will or will not be rearrested in
a linear analysis. Similar to the Cox regressions presented
above, the neural measures of error-monitoring and post-
error processing were included in models with the covariates
(Tables 6 and 7). Again, the principal component measure
of post-error processing was most sensitive to identifying
who would or would not be rearrested. The best logistic
regression model included PCA and ACC activation measures.
In this model, individuals were identified at 65.85% rate
overall with 65.00% correctly identified as not being rearrested
and 66.67% correctly identified as rearrested (AUC = 0.658;
Table 7D). PC4, p = 0.038 was the only unique predictor
in this model. For every unit increase in PC4 amplitude,
there was a 38.31 increase in the probability of rearrest.
Generalizability of these logistic regression models is enhanced
because of the out of sample cross-validation implemented
here.

To evaluate non-linear combinations of these variables
predicting rearrest, SVM models were computed. Four simple
models were computed containing: (1) only the covariates,
(2) only the TD measures (ERN/Ne, and Pe), (3) only the
PCA measures (PC1 and PC4), (4) or only ACC activity.
Additional models were computed which combined ERP
TD, ERP PCA, ACC activation, and covariate measures
(Table 8). Several of these models successfully predicted
either who will be rearrested or who will not be rearrested.
The model that predicted both who will and will not
be rearrested included the ERP PCA and ACC activation
measures (Table 8B). This model had an overall accuracy
of 78.05% while accurately predicting who will (83.33%)
and will not (70.59%) be rearrested. Similar to the logistic
regression models, the SVM models presented here were
cross-validated thereby increasing the generalizability of these
results.

Each of the three analytical approaches (Cox regression,
logistic regression, and SVM) was successful in classifying
either time to rearrest or whether someone will or will not
be rearrested. Arguably the strongest models with out of
sample cross-validation presented here with this sample
included multimodal neural measures of error-processing.
In all three analytical approaches, the models that included
the PCA measure of ERPs and ACC activation were most
useful in prospectively predicting time to rearrest and
classifying individuals who will and will not be rearrested.
The strongest unique predictor in these models proved to
be PC4 which corresponds to the Pe. This ERP component,
as discussed below, is interpreted as a measure of post-error
processing. However, in the SVM models, the combination
of ERP and fMRI measures without other covariates was
most successful in classifying groups suggesting multimodal
imaging measures are well suited to these types of prediction
models.

Discussion

The present study marks a first attempt at prospective
neuroprediction of rearrest by measuring post-error processing
in both ERPs and functional magnetic resonance imaging (fMRI).
Multimodal and individual models including ERP and fMRI
measures accurately classified individuals who would or would
not be rearrested. SVM models which included ERP and fMRI
measures proved to be most sensitive in predicting outcomes
compared to Cox and logistic regressions. The best SVM
model was 78.05% accurate overall while identifying 83.33% of
those who were rearrested and 70.59% of those who were not
rearrested. This model included PCAof ERPs andACCactivation
elicited by response errors. Neural measures predicted outcomes
over other, traditional measures (i.e., the covariates in these
models). Age of release, PCL-R Factor 1, and PCL-R Factor 2
were also identified as predictors of rearrest although the best
prediction models only included the neural measures of post-
error processing. Amultimodal neuroimaging approach isolating
post-error processes is highlighted here allowed for reliable
prospective predictions of antisocial behavior (i.e., rearrest).

Increased Pe amplitude and reduced ACC hemodynamic
activity measured here prospectively predicted rearrest. The
Pe, measured in response inhibition tasks, has been known to
index further error-processing, conscious evaluation of the error,
response strategy adjustments, and/or affective assessment of
the error (Falkenstein et al., 1991; Nieuwenhuis et al., 2001;
Overbeek et al., 2005). The Pe has been linked to ACC activation
(van Veen and Carter, 2002; Edwards et al., 2012) and to poor
future outcomes in drug treatment (Steele et al., 2014b). More
specifically, increased Pe, as identified here, has been linked to
decreased ACC activation (Edwards et al., 2012) which is in-
line with our previous report that low ACC activation predicts
rearrest (Aharoni et al., 2013).

With sophisticated analytical techniques used here (SVM),
it was possible to accurately predict rearrest from increased
Pe amplitude and decreased hemodynamic activation in the
ACC. In the current sample, ERN/Ne did not predict outcomes.
Identifying the Pe and not the ERN/Ne as predictive of rearrest
isolates post-error processing as the cognitive function associated
with poor future outcomes. Individuals who differentially process
errors may have difficulty learning from mistakes which may
lead to poor behavioral outcomes. More specifically, offenders
with abnormal post-error processes may be at greater antisocial
risk because response errors are not categorized as events to be
minimized in the future. Understanding which specific cognitive
function is important in that neural responses are relatively
dynamic and amenable to change (Greely, 2009; Woltering et al.,
2011; Larson et al., 2013) thus holding an advantage over other
risk factors (e.g., age of release). Treatment specifically targeting
conscious awareness of errors and modifying behavior to avoid
future errors may be useful in future interventions to remediate
antisocial (or impulsive) behavior and reducing Pe amplitudes
(c.f. Larson et al., 2013).

Although the present findings extend previous
neuroprediction models, caution should be exercised when
applying these findings to real-world situations. Incremental
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TABLE 8 | Support vector machine analyses with ERP, fMRI, and covariates predicting rearrest.

(A)

Covariates Time-domain
measures

PCA
measures

Covariates with
TD Measures

Covariates with PCA
measures

Overall classification rate 60.98% 65.85% 70.73% 73.17% 70.73%

Specificity 70.83% 95.83% 58.33% 83.33% 66.67%

Sensitivity 47.06% 23.53% 88.24% 58.82% 76.47%

Positive predictive value 53.33% 80.00% 60.00% 71.43% 61.90%

Negative predictive value 65.38% 63.89% 87.50% 74.07% 80.00%

Five support vector machine (SVM) models predicting rearrest were computed individually for covariates (age at release, PCL-R factor 1, PCL-R factor 2, drug
dependencies, and alcohol dependencies), component windowed TD ERP measures (mean of ERN/Ne and Pe), and principal component (PCA) ERP measures
(mean of PC1 and PC4). Covariates and ERP measures (either TD or PCA measures) were included in additional SVM models. Specificity is the measure of how well
the model identified who will be rearrested and sensitivity is the measure of how well the model identified who will not be rearrested. Positive predictive value
represents the ratio of individuals who were not rearrested to combined individuals identified correctly and incorrectly to not be rearrested. Negative predictive value
represents the ratio of individuals who were rearrested to combined individuals identified correctly and incorrectly to be rearrested.

(B)

ACC ACC with
covariates

ACC with TD
measures

ACC with PCA
measures

ACC, TD, and
covariates

ACC, PCA, and covariates

Overall classification rate 68.29% 63.41% 70.73% 78.05% 68.29% 73.17%

Specificity 62.50% 58.33% 66.67% 83.33% 66.67% 66.67%

Sensitivity 76.47% 70.59% 76.47% 70.59% 70.59% 82.35%

Positive predictive value 59.09% 54.55% 61.90% 75.00% 60.00% 63.64%

Negative predictive value 78.95% 73.68% 80.00% 80.00% 76.19% 84.21%

Six SVM models predicting rearrest were computed for the hemodynamic activation measured in the anterior cingulate cortex (ACC) along with covariates (age at release,
PCL-R factor 1, PCL-R factor 2, drug dependencies, and alcohol dependencies), and ERP measures (component windowed TD and PCA measures). Specificity is the
measure of how well the model identified who will be rearrested and sensitivity is the measure of how well the model identified who will not be rearrested. Positive predictive
value represents the ratio of individuals who were not rearrested to combined individuals identified correctly and incorrectly to not be rearrested. Negative predictive value
represents the ratio of individuals who were rearrested to combined individuals identified correctly and incorrectly to be rearrested.

validity in neural measures of post-error processing was
demonstrated over and above actuarial measures in predicting
rearrest and time to rearrest. However, our sample was limited
to 45 participants and the fMRI analysis was limited to activation
within the ACC. Both Age and ACC activation were less
predictive of future outcomes compared to previous reports
which included 96 participants (Aharoni et al., 2013) most likely
because of the reduced sample size. Replications and larger
samples are necessary to isolate any specific indicator variables
between neural measures and future behavior. Additional fMRI
analysis including other regions of interest identified in this
task (Steele et al., 2013, 2014a) or more sophisticated analysis
techniques (e.g., ICA) could be used to identify networks
that are predictive of rearrest. Moreover, we highlight here
the need for replications and extension of these findings.
Specifically, such analyses should be carried out in youth
samples to help identify prediction measures that could be
targeted prior to reaching adulthood. Also, the current sample
only included incarcerated males. Future samples should use
females and parolees to extend the current findings. Finally,
a direct comparison of neural measures of error-processing
between incarcerated individuals who did or did not reoffend
and healthy controls is necessary to fully delineate specific
cognitive functions or dysfunctions related to risk of reoffending.
With such a comparison, stronger conclusions could be made
toward the Pe and ACC activation differences highlighted

here and the relation to a healthy control sample. Finally, the
heterogeneity of reoffenses in the current sample allowed for
little interpretation about risk-factors related to specific types
of offense. Future studies could employ a larger sample of
homogeneous offenders that could help with interpretation of
specific offense outcomes. Each of these analyses, paired with
the current findings, could lead to the development of targeted
interventions and treatments for those individuals at greatest
risk of rearrest. Allocating scarce resources to individuals with
the greatest need could potentially reduce incidents of future
arrest thus reducing the societal cost of crime overall. Finally,
we caution the use of our findings, and any neuropredictive
measures at this point, to identify any single individual’s risk.
Presented here are group-level analyses to be only interpreted in
that context.

These results extend recent findings by Aharoni et al.
(2013), previous accounts that increased ACC activation is
associated with improved inhibitory control (Kerns et al.,
2004), and increased Pe amplitude to be related to poor
future outcomes (Steele et al., 2014b). Both ERP and fMRI
measures of error-processing prospectively predict rearrest.
SVM models provided the strongest models relative to Cox
and logistic regressions though each of these models was
successful in prospectively predicting outcomes. Individuals
with increased Pe amplitude and decreased ACC activation,
specifically indexing error-processing, were more likely to be
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rearrested after release from incarceration. These findings
should be used to develop new treatments specifically targeting
conscious processing of response errors in an attempt to reduce
future rearrests. Recent mindfulness treatments have specifically
targeted such processes while reducing Pe amplitudes (Larson
et al., 2013) and should be seriously considered as an intervention
in individuals at greatest risk for poor future outcomes. The
power of multimodal predicting is highlighted here in the
sensitivity demonstrated within this relatively small sample. This
power is yet to be fully realized and future explorations of this
topic, with larger samples, are necessary to solidify the findings
reported here.
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