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Abstract

We exploit the principles of choice architecture to evaluate interventions in the
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form, or an enhanced reform designed to minimize attribute overload - and of-
fered choices based on prior structural estimation of individual preferences. Con-
sumers routinely choose incorrectly under the status quo, with tentative evidence
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I Introduction

Until recently, it has been taken as given that increasing the number of choices can

only improve consumer welfare. Economists are now appreciating the many instances

where choice can be time-consuming, confusing, frustrating and, at times, debilitating

(Scheibehenne, Greifender, and Todd, 2010; Besedes et al., 2015). Relatedly, just as a

sufficiently large choice set can lead to consumer choice overload, when presented with a

set of options that each vary on many different attributes, there is potential for consumers

to exhibit “attribute overload,” and it is reasonable to expect they may choose incorrectly

in this context too (Fasolo et al., 2007). Because the welfare consequences of consumer

decision errors can be large, firms and governments have begun to consult the behavioral

expertise of “choice architects” - scholars and practitioners who understand that the

selection made by consumers depends to a great extent on how the choice is presented

(Thaler and Sunstein, 2008).

There is by now a sizable literature on the phenomena of choice overload in eco-

nomics and related disciplines, including considerable debate about its practical rele-

vance (Scheibehenne, Greifender, and Todd, 2010). In this paper, we expand the liter-

ature in three distinct directions. First, we extend the understanding of the “paradox

of choice” (Schwartz, 2004; Besedes et al, 2012) in the context of consumer goods and

services. Specifically, we find that consumers experience overload, making more welfare-

diminishing choices, when the number of attributes per choice is increased, even when

the size and all other relevant features of the choice set are held constant. Because our

experimental design customizes treatments at the individual level, using structurally es-

timated utility parameters derived from individuals’ pre-treatment choices, it provides a

broader understanding of mistakes - that is, not just dominated choices, a first in the

literature. Further, and critically, it allows us to precisely calculate the welfare loss of

mistakes in ways that would otherwise not be possible, and therefore extends the litera-
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ture on overload (Iyengar and Lepper, 2000; Lee and Lee, 2004), however defined. Put

differently, we are able to provide a new understanding of what constitutes a mistake,

and, how much that mistake costs.

Second, consistent with the increased influence of choice architects in both the pri-

vate and public sectors, we embed the problem of attribute overload within the broader

framework of information architecture in decision-making (Bertrand and Morse, 2011;

Besedes et al., 2015) and design potential interventions accordingly. Samek et al (2016)

and Peters et al (2009) have previously shown the importance of information architecture

(in their case, the interaction with information using visual and other tools) in influenc-

ing decisions in multi-attribute environments. More proximately, Agnew and Szykman

(2005) show that the effects of information architecture - in particular, the adoption of

one of the “tabular” formats we experimentally assign - varies with financial literacy,

something that we are able to control for here.

Third, we situate our research in an important but understudied consumer finance

market where choice architects are set to play an increasingly influential regulatory role:

the market for prepaid cards. Soll et al (2013), which evaluated whether the architecture

prescribed in the CARD Act of 2009 increased consumer understanding of traditional

credit cards, is in this sense a natural antecedent for our work in a related but distinct

consumer financial product market.

Over the past decade, the open-loop prepaid card market in the United States has

grown from $14 billion to $295 billion (in 2016), an annual rate of growth of more than

30%, and is expected to reach an estimated $352.6 billion by 2020 (Rhine et al., 2007;

Greene et al., 2016; Consumer Reports, 2017; Sloane, 2017).1 A dominant segment of

1Prepaid cards differ from debit cards “in that a debit card draws on an account owned by the
cardholder” and they differ from credit cards in that “they do not draw on a line of credit established in
the name of the cardholder.” Rather, they are payment devices where funds are loaded on an account
associated with the payment device (not the cardholder). Open-loop cards “connect to one of the major
payment network rails to complete transactions” (e.g. Visa, Mastercard, Discover, or American Express)
(Sloane, 2017).
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this market, accounting for a third of the current total, is the general purpose reloadable

(GPR) card.2 Consumers use GPRs as they would other forms of payment, to make

purchases at merchants, to pay bills online, to obtain cash from ATM machines, and

even to receive their pay from employers. GPRs tend to be used by the un- or under-

banked, consumers who typically do not have (or cannot get) a bank account. These

people are disproportionately likely to be poor, young, female, divorced or separated and

living in neighborhoods with higher levels of violent crime (Hayashi and Cuddy, 2014;

Greene and Shy, 2015; Cole and Greene, 2016; Ratcliffe et al., 2017). On the one hand,

GPRs can be both more accessible and convenient to some consumers because one does

not need to have a bank account to obtain one, but, on the other hand, as with other

financial products (Choi et al., 2010), they are often associated with high fees. The fees

can be numerous and their purpose - and more importantly, how to avoid them - is often

unclear. The list of fees includes, but is not limited to, “periodic fees,” which are fees for

holding a card for a specific time period, “per purchase fees,” “cash reload fees,” “ATM

balance inquiry fees,” “customer service fees”, and even “inactivity fees.” In fact, the

typical card carries between 7 and 15 fees (Pew, 2012).

Because the “choice problem” of the un-banked often does not include whether

or not to use GPRs (given lack of access to traditional banking tools, GPRs are often

relied on as a last resort), it is the task of regulators to ensure that the GPR market is

not exploitative. While conventional wisdom now holds that consumers who overdraft

their bank accounts often are likely to be better off using GPRs, the fees associated

with GPRs make them very expensive ways to store and access their funds (Hayashi and

Cuddy, 2015).3 Moreover, the current presentation of the fees associated with GPRs

varies from provider to provider and many of the fee details are buried in the small print

or online. From a choice architecture perspective, this design of the fee disclosures is poor

2The term general purpose is used because, unlike some other prepaid cards, they are not limited to
specific uses, such as travel or within a specific store.

3In a survey of consumers, a Pew Foundation survey (2014) found that “avoiding overdrafts” and
“avoiding spending more money than they have” were two of the top four reasons to acquire a card.
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if, of course, the object is to facilitate the choices that best reflect consumer preferences

(CFPB, 2014(a)).

In 2016, the Consumer Financial Protection Bureau (CFPB) finalized a rule to,

among other things, create tailored provisions governing disclosures for prepaid accounts

(including GPRs). Under the rule, financial institutions would be required to provide

consumers with certain disclosures before acquiring the prepaid account. The “short

form” disclosure presents a subset of a card’s fees, terms, and conditions, in a format

that is intended to be easy for consumers to read, and to facilitate comparisons across

prepaid products. The “long form” is an exhaustive list of all of a card’s fees and

qualifying conditions, among other information, presented in a tabular format. In retail

environments, the new rule requires financial institutions to prominently display the short

form disclosure on the card’s packaging,4 while the long form disclosure may be provided

after acquisition as long as it is made available via telephone and via the world wide web

prior to acquisition.5

The CFPB designed the short form disclosures in a process of iterative testing and

design.6 In doing so, the CFPB considered the lessons of the choice architecture literature

(e.g., Thaler et al., 2012 or Johnson et al., 2012; Peters et al., 2009). In particular,

CFPB was guided by the principles of “parsimony,” “comparability,” and “evaluability”

(Johnson et al., 2012). The principle of parsimony led to the two-tiered design (short form

disclosure and long form disclosure), with the short form intended to highlight a subset

of the prepaid account’s most important attributes. The principle of comparability led

to a rule that will standardize prepaid disclosures across products and across acquisition

channels (e.g., retail and online purchases), and a simple, tabular design. The principal

4The short forms provided by the CFPB in its rule are technically “model forms,” and financial
institutions must therefore provide a disclosure that is “substantially similar” to the CFPB’s short form
disclosure.

5These requirements vary depending on the acquisition channel. Generally, both the short form
disclosure and long form disclosure must be provided prior to account acquisition. However, there are
exceptions in certain cases, such as acquisition through the retail channel.

6See ICF International, 2014; 2015.
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of evaluability led the CFPB toward a testing plan in which form designs were iterated

over five rounds of consumer testing to improve participants’ comprehension of fees and

terms, abilities to compare across multiple products, and performance on hypothetical

shopping tasks.7

The CFPB regulation of the GPR market - finally implemented in the spring of

2019 - offers an interesting real-world setting to further examine the principles of choice

architecture on a large scale. This analysis forms part of our paper. Our main con-

tribution, however, comes from the tighter identification and measurement offered by a

controlled laboratory experiment we ran, in the spirit of Smith (1994), to evaluate the

consequences of the policy intervention before it took place.

Our experiment took place in two parts. During the first part, we collected incen-

tivized risk and time preferences along with demographics and data on cognitive ability

and financial literacy. In the second part, which took place seven weeks later, the par-

ticipants came back to the lab to do more, related, preference and individual-decision

making work. For the most part, however, the second stage comprised a series of “filler

tasks” that obscured its true purpose, namely, the choice of a GPR. At the beginning of

this stage, participants were told that to simplify the compensation process they would

be paid using GPRs, making our lab experiment one where the choice of interest, though

made in a lab, has a degree of realism more common to natural field experiments (akin

to the real effort lab literature, Carpenter and Huet-Vaughn, 2017).

For this second-stage payment, each participant was asked to choose from among

three GPRs offered, the parameters of which were individualized for each participant

7The CFPB also tested a decision-aid in the form of price thermometers designed to give consumers
a sense of how a product’s fees compared to other prepaid cards’ fees. Test participants found these aids
confusing rather than helpful and so they were abandoned in subsequent CFPB designs. In addition,
CFPB considered, but did not test, breaking the prepaid account information down into “grades” (e.g.,
Peters et al., 2009). However CFPB observed through focus groups that consumers used prepaid accounts
in a large variety of ways and that use-patterns varied considerably across individuals. These facts led
the CFPB to pursue other paths since the development of grades that could parsimoniously describe
prepaid cards’ fees in a way that would benefit a sufficiently large proportion of consumers presented
large challenges.
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(unknown to them) based on the preferences that they revealed in the first stage of the

experiment.8 The attributes (i.e., the fees) of one card, the “anchor card,” were assigned

randomly from predetermined intervals that were representative of fees incurred using

the typical card in this market. A second card, the “dominated card,” had the same

overall net fee structure as the anchor card (though generated from different values of

the specific fees) but offered loss-prevention insurance on worse terms.9 The third card

was constructed, based on the individual’s preferences, such that its predicted expected

utility had a lower bound for the 95% forecast interval set at the upper bound of the

95% forecast interval of the anchor card. With few exceptions, in other words, the third

card should be the “best card” for the consumer, given her elicited preferences, while the

“dominated card” is always the worst card.

In the presentation of the three card choice menu, we randomized subjects into

one of three choice architecture treatments. The first treatment was intended to be

representative of some of the products in the existing GPR industry, and, thus, a baseline,

or status quo, control. Here all the fees were listed in the disclosure describing the card,

but they were stated as text in the “fine print.” The second treatment was designed

in the spirit of the above-mentioned CFPB short form guidelines, which aim to present

information clearly and concisely, in a tabular format, and in a way that facilitates

comparing terms across products. In addition, we designed an alternative, enhanced

disclosure that was meant to go a step further than the CFPB short form. Here, along

with the attribute information being clearly presented in tabular form to enhance the

comparability of the cards offered, our disclosure did some of the required arithmetic for

8For a methodology in the same spirit - though in a quite different context and with a wholly different
purpose to our own - see the contemporaneous work of Andreoni et al., 2016, which also uses individual
preference estimates to predict an individual’s preference ordering over out-of-sample choices generated
by researchers.

9One could view the focus on loss insurance - as opposed to deposit insurance or fraud protection -
as a reflection of its salience in this particular market, consistent with Consumer Reports’ reminder to
readers to activate it, and with its recommendation that CFPB mandate uniformity in coverage terms.
Alternatively, and following the suggestion of one reviewer, one could instead treat it as representative
of all those fees whose value to the card user is uncertain.
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the consumer, with the goal of increasing the parsimony of the disclosure and reducing the

attribute space to the extent possible while keeping the utility associated with each choice

the same. Though not limiting for our experiment, note that our enhanced disclosure

would require additional regulation, if implemented. That is, to go beyond the imposition

of a sensible architecture on the disclosure information in this market, and, to take the

further step of enhancing that architecture to reduce attribute overload, would be costly,

as it would likely necessitate the standardization of the potential fees, themselves, in

addition to the standardization of how those fees are disclosed.

As noted, a unique feature of our approach is the customization of individual GPR

treatments based on the prior elicitation of preferences. In particular, we used our first

stage data to generate structural estimates of the parameters of a standard utility func-

tion at the individual level, and then tailored the GPRs each consumer faced such that

all participants saw personalized but (roughly) equivalent comparisons. This stands in

marked contrast to standard protocols in which the choices are common to all partici-

pants and classification is impossible. Our reliance on individual-level preferences also

allows us to conduct a more robust welfare analysis. That is, in addition to knowing

whether consumers have made the “correct” choice, as measured by their elicited prefer-

ences, we can assess the implications of incorrect - and not just dominated - choices, and

are able to ask whether the benefits of an intervention that improves consumer choices

outweigh its possible costs.

Our results reveal that the majority of consumers choose the “wrong” GPR in the

control treatment, as judged by their own preference elicitations of the optimal choice,

including approximately 20% of our participants who chose the dominated card. With

respect to the second treatment, in the spirit of the CFPB short form, there is a slight

reduction (4pp) in the fraction choosing the dominated card while there is a 16 percentage

point increase in the fraction choosing the best card; however, these differences, while

large, are not significant at conventional levels. In the third treatment, in which the
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fee information is further consolidated, we find a statistically significant reduction in

the fraction of consumers who choose the dominated card compared to both the control

treatment (18pp) and the regulation-inspired intervention (13pp), but there is no evidence

of significant movement to the best card.

These results suggest that, given the menu of choices we provided, the cost of

attribute overload is born mostly by those inclined to make a very bad choice rather

than by those who fail to make the best choice in our setting. In addition to reducing

the likelihood of an obvious error (i.e., picking a dominated card), the third treatment

also dramatically reduces the amount of time needed to make a choice. Taking this

into account along with the preferences of our participants, we find suggestive evidence

that the second treatment, designed in the spirit of the CFPB short form, may increase

welfare modestly, and stronger evidence that the enhanced intervention, increases welfare

by about a fifth.

We proceed by describing the details of our experimental design, including our

preference elicitation methods, the choice architectures implemented and the other in-

formation we gathered from our participants. Our discussion of the results begins by

assessing how long it took to pick a GPR, on average, and the treatment differences in

this outcome. We then discuss the likelihood of picking the dominated and best cards,

in turn. The last outcome that we consider is a measure of consumer welfare enabled by

our methodology. Here we assess the ability of the treatments to increase the fraction of

the available dollar welfare gains achieved in the experiment. We end our discussion of

the main results with a few robustness checks. We then consider the external validity of

our experimental findings for choices made outside of the lab, including a study of the

consequences of the CFPB policy change. In the last section of the paper we summarize

our findings and discuss their implications.
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II Experimental Design

The experiment was conducted in two phases, which were separated by seven weeks.

Both phases took place in the lab and were programmed using the experimental software

z-Tree (Fischbacher 2007). The purpose of the first phase was to elicit participants’ risk

and time preferences, as well as to collect background data on demographics, cognitive

ability, personality, and financial literacy and attitudes. The same participants were

invited back to the lab for the second phase, during which they made the choice of

primary interest: selecting one of three general purpose reloadable cards. Upon entering

the second stage, each participant was randomly assigned to one of three alternative

experimental treatments (unbeknownst to them), each differing in how the attributes of

the GPR card were presented. Participants received the GPR card of their choice at

the end of the second phase. One hundred and twenty-nine participants completed both

phases of the experiment and are included in our main analysis.10

II.1 Preference Elicitation

Participants’ risk and time preferences were elicited using both the Convex Time Budget

(CTB) method developed by Andreoni and Sprenger (2012) and the Double Multiple

Price List (DMPL) method developed by Andersen et al. (2008). In each CTB choice,

participants were asked to allocate 100 tokens across two time periods. The earlier

time period was always the following day, while the later time period was k days later,

where k ∈ {7, 14, 21, 28, 35}.11 Each token allocated to the later time period always paid

10An additional 36 participants completed only the first phase and did not return for the second stage.
As the experimental treatment took place upon entry to the second stage, attrition from stage 1 to stage
2 is not a concern for internal validity. An additional 11 participants completed both stages but could not
be included in the analysis because their preference elicitation responses do not enable us to determine
a “best” card option for them. Similarly, one individual who participated in stage 2 was not included in
the analysis because we could not reliably match them to a stage 1 choices due to an error in how their
ID was recorded.

11We chose not to offer the possibility of immediate payment for practical design reasons, and because
previous work (Augenblick et al., 2015) indicates a limited role for present bias in cases, such as ours,
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the participant $0.20 on that day, while tokens allocated to the earlier period variously

paid $0.21, $0.20, $0.19, $0.18, $0.16, $0.14, or $0.12. Participants thus faced five time

horizons, with seven relative prices in each, for a total of 35 choices.

To allocate their tokens, participants dragged a slider between the two time periods.

As they moved the sliders, their screens updated dynamically with the dollar amounts

they would receive on each date, as well as color-coded bars showing the proportion of

tokens allocated to both periods. Figure 1 displays the seven choices presented to par-

ticipants for the three week time horizon.12 In addition to the CTB choices, participants

also made binary choices between consumption in two time periods. They did this for five

distinct price lists with equivalent time horizons and relative consumption magnitudes

to the CTB choices (see Appendix Figure A2 for an example of one of the time price

lists). Finally, all participants completed two Holt and Laury (2002) multiple price list

elicitations to gather risk attitudes (see Appendix Figure A3 for an example of the risk

price list). The risk and time preferences elicited using these price lists comprise our

DMPL data.

At the end of the session, one decision that the participant had made was ran-

domly selected for payment. We follow the payment protocol developed by Andreoni

and Sprenger (2012). Specifically, participants were given two envelopes, labeled “to-

morrow” and “later,” which they self-addressed. They were told that they would receive

the “tomorrow” envelope in their campus mailbox the following day with $5 plus any

money due to them that day (based on their randomly selected decision) and would re-

ceive the “later” envelope with $5 plus any money due to them later, k days after that.

of CTB choices over money (and it is only for identification of a hyperbolic discounting parameter that
immediate payments are needed). Regarding the practical design reasons, as emphasized by Andreoni
and Sprenger (2012), it is important to ensure that the method of payment is consistent across time
periods, which meant that our participants collected all of their payments from their campus mailbox.
The earliest they could do so was the following day. Additionally, we wanted the time periods to align
with the second phase of the experiment, when the earliest they could access funds on their GPR card
was the day after the experiment.

12We use CTB estimates of the curvature of the utility function to infer individual risk preferences,
but discuss the more direct DMPL measures in the robustness section.
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Figure 1: Example of Convex Time Budget Choices

The payment of at least $5 in both time periods, regardless of whether the participant

allocated any tokens to that time period, ensures that there are no additional transac-

tion costs from spreading the tokens over time. The receipt of the sooner payment the

following day, and in the same manner as the later payment, ensures that there is no

additional risk to allocating money to the later time period.

Following the completion of the first phase, we estimated the parameters of the

CRRA utility function U(c1, c1+k) = 1
α

(c1)
α + δk 1

α
(c1+k)

α at the individual level using

non-linear least squares, where c1 is consumption the day after the experiment, c1+k is

consumption k days later, and α and δ are, respectively his or her curvature, or risk

parameter, and discount factor. One thing to note is that because we account for the

consumption delay in days, δ is the individual’s daily discount factor implying most

estimates will be between 0.99 and 1. Using this estimation method and the CTB choice

data, parameter estimates of α and δ could be generated for 137 individuals (77.4% of

those who completed the first phase) who regularly split their 100 tokens across both time

periods. Most of the remainder exhibited behavior consistent with the maximization of
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total payments over time and for these, we assume α = 1 and δ = 1. In the end,

we achieved significant variation in the preferences revealed. Despite the limited possible

differences in the daily discount factors and the “money maximizers,” there are 97 unique

αs and 98 unique δs and the coefficients of variation are 14% and 12%, respectively.

II.2 Card Choice

The second phase of the experiment took place seven weeks later, after all payments

from the first phase had been made.13 At the start of the session, participants were

informed that they would be paid for their participation with a GPR card (Figure A1)

in the appendix). They were told that the cards enabled us to pay them over multiple

time periods, while avoiding the cumbersome process of depositing envelopes in their

mailboxes that they had experienced after the first phase – which was both true and

provided a plausible reason for the use of the cards.14 The cards were purchased from

a large gift card vendor, which offers branded debit cards to corporate clients, and were

printed with our lab logo. The cards could be used to make purchases anywhere that

Visa cards are accepted and were valid for six months after the experiment. We paid all

of the cards’ actual fees directly to the vendor, so that they were not experienced by our

participants. Instead, from the perspective of the participants, the only attributes of the

cards were ones that we defined and manipulated, as described below. In addition, the

product we chose did not have any fees that depended on user behavior, such as ATM

withdrawals or customer service calls, which we would not have been able to control.

The cards could vary along eight attribute dimensions. Each card offered an ini-

13The 7-week window is imposed to satisfy the protocol of the CTB design while ensuring the stage
2 choices are not contaminated by stage 1 CTB payments being (differentially) received during stage 2.
Since it was possible (based on chance and subject choices) for some subjects to be paid in the sixth
week after stage 1 on the basis of the 35-day window choice in stage 1, we started stage 2 the week after
to make sure all subjects were paid fully for stage 1 before stage 2 started.

14In addition, participants completed a filler task after making their card choice, which included
similar questions to the initial survey, to reduce the likelihood of participants speculating (and possibly
discussing) that the card choice was the main purpose of the second phase.
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tial deposit, to be loaded onto the participant’s card the day after the experiment and

accessible the same day. An additional, reload deposit was made four weeks later. In ad-

dition, there were five separate fees, which were modeled after actual fees typical to GPR

cards, and which had the effect of reducing either the initial deposit, the reload deposit,

or both. The specific fees that we added on our cards were: activation fee (subtracted

from initial deposit), reload fee (subtracted from reload deposit), monthly fee (subtracted

from both deposits), service fee (subtracted from both deposits), and administration fee

(subtracted from both deposits). The final attribute concerned the riskiness of the card,

which we varied using the terms of the loss insurance: without insurance, there was a

50% chance that $10 would be subtracted from the reload deposit, but, with insurance,

participants paid a fee to reduce the likelihood of this loss.15 The $10 loss is in line with

what many GPR cardholders are charged for a replacement card. Note that all of these

attributes simply affect the magnitude and/or likelihood of the participants’ earnings in

the two time periods, and thus, based on their responses from phase one of the experi-

ment, we can estimate the expected utility that each individual participant derives from

any card/bundle of attributes.

Each participant was presented a menu of three cards, which were tailored specif-

ically for them, based on our estimates of their utility function.16 The participant was

presented with three card options, which we will term Best, Middle, and Worst.17 For

each participant, the attributes for the Middle card were chosen by randomly generating

integer values between $28 and $38 for the initial and reload deposits and fee amounts

between $1 and $5 in five cent increments. The insurance policy on the Middle card was

always set such that the participant paid $4.25 to reduce the chance of a $10 loss to 10%

15To be clear, this is not actual FDIC insurance, but rather an experimental intervention designed to
emulate it or similar vendor offered insurances.

16Of course, this assumes that the elicited preferences of our participants were stable across the inter-
vening period, a supposition we base on the recent results of Meier and Sprenger (2015) and Schildberg-
Hörisch (2018).

17In the experiment, the cards were referred to as A, B, and C and presented in a random order on
the screen.
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(down from 50%), a policy that would be attractive only for risk-averse participants.

The attributes for the Worst card were then generated so that it was dominated by the

Middle card. Specifically, the deposit in each time period, minus the associated fees,

totaled the same amount as the participant’s Middle card, but the insurance policy was

less favorable, only reducing the chance of loss to 15%.

Finally, the Best card attributes were generated to produce an option with higher

expected utility for the participant, based on our estimates of that participant’s utility

function. The Best card never came with insurance and thus was riskier than the other

two cards. As a first pass, we generated attribute values for the Best card such that the

upper bound of the 95% confidence interval around the expected utility of the Middle

card just touched the lower bound of the confidence interval around the expected utility

of the Best card. This produced Best card attribute values for 108 participants (61% of

our sample) and, for the average participant, the difference in expected utility between

the Best and Middle card was 4.65 (equivalent to $4.86 on average). This method could

not be used to produce attributes for participants whose preferences were consistent with

money-maximization, since their parameter values were estimated with certainty, or to

produce attributes within the required range for participants whose preference parameters

were very imprecisely estimated. Instead, we generated Best cards for these individuals

by randomly generating attributes that produced a “utility bump” of 4.65 over their

Middle card.18

18Three individuals did not receive attributes using this method, due to their extremely low α values
(0.499, 0.52, and 0.1). They were given the attribute values for the individual with the lowest α for
whom we could generate in-range attributes (0.539). For nine remaining individuals, we were unable to
generate Best card estimates using either method, because they had negative α estimates or chose all
corner allocations that were not consistent with money-maximization. We gave these individuals card
choices similar to those for money-maximizers, and, assigned them randomly across the three treatments.
We do not consider these dozen exceptional cases in the analysis as there is little relation between their
actual preference parameters and the cards they were offered (or a meaningful individualized ranking of
card values).
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II.3 Treatments

Three separate choice architecture treatments were conducted, which differed in how

the card attributes were presented to the participants. Each participant was randomly

assigned to one of the three treatments and was unaware of the other treatments. In all

three treatments, the three card offers were displayed simultaneously on the screen and

participants had five minutes to make a choice.19 In the Text treatment, the two deposit

amounts and the insurance policy are clearly presented to participants. However, the

additional fees that would cut into the participants’ earnings are buried in fine print at

the bottom of the card description. This treatment thus aligns with some of the least

transparent products available in the GPR card market at the time of the experiment.

Figure 2 presents the actual choice screen seen by a participant in the Text treatment.

The Tabular treatment is identical to the Text treatment, except that the fees are

presented to the participants in a tabular format. Thus, participants in the Tabular

treatment can easily compare each fee across the three cards options. Figure 3 presents

a choice seen by a participant in the Tabular treatment. For each individual card, this

treatment is consistent with a standardized fee disclosure template. Looking across the

three cards on the screen, the tabular format resembles those used by many online “shop-

ping comparison” tools.

The Consolidated treatment allows for an assessment of whether spreading fees

across a large number of attributes impairs consumers’ ability to choose the best available

product. In this treatment, all of the hidden fees are summed and subtracted from the

card’s initial and reload amounts. The consumer therefore needs to consider only three

distinct attributes in this treatment, instead of the eight attributes present in the other

treatments. By eliminating attributes that simply affect the magnitude of the initial and

19After five minutes the screen started flashing in order to induce a decision, but it never actually
timed out and this did not end up being a binding constraint. Subjects could use the calculators on
their phones if they wished, although anecdotally this did not occur often.
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Figure 2: Example of Participant Card Choice in the Text Treatment
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Figure 3: Example of Participant Card Choice in the Tabular Treatment

17



reload amounts, but don’t hold any implicit value for participants, we are able to vary

the number of attributes without otherwise influencing the underlying expected utility

of any of the card options.20 Figure 4 presents a choice seen by a participant in the

Consolidated treatment.

Figure 4: Example of Participant Card Choice in the Consolidated Treatment

20We note that some readers may feel the application of the term “attribute” here raises philosophical
or conceptual questions as to what exactly constitutes an attribute. Many of the attributes in our
context can be reduced, or consolidated, to a natural common base category (e.g. period 1 dollars). In
one sense, such a base category is an attribute “primitive” while the the objects that compose it are
not. While this is a reasonable way to define terms, in the prepaid card market it is still the case that
different fees are marketed as distinct attributes of the product (service fee; reload fee; etc.) despite
their reducibility to a common base category in dollar units. Given our policy context, in the paper
we think it makes sense to use attribute in this sense (and as it is used in the marketplace we study)
- that is, as something that is distinguished by the seller as a unique and independent feature of the
product. However, we note that attribute overload may behave differently when the cognitive limitation
is forced by the difficulty of reducing “naturally” reducible attributes versus the difficulty of converting
less-clearly-reducible attributes to a common scale.

18



One thing to consider about the Consolidated treatment is that, while reducing

attributes by collapsing fees is easy to implement in the lab with the cards we have

designed, in the market, collapsing fees would be more difficult without further regulation.

Our MiddExLab cards incur fees at only two moments in time, when the initial amount

is loaded and when the cards are reloaded. By contrast, in the market, as it is now, fees

are incurred at many more distinct times so unless regulations are added to limit when

fees can be charged, it would be hard to collapse attributes as comprehensively as we do.

The broader point, however, is that the lab is the perfect environment for testing the

effect of attribute overload, but transferring that knowledge to the marketplace would be

more difficult because there cards are (currently) more complex and varied.

III Results

To begin, we present summary statistics on each of the observable variables and pa-

rameters that we hypothesize may influence card choice in the experiment, and assess

whether participants are balanced across our three treatments on these measures. Sum-

mary statistics for each treatment are presented in Table 1. First, we consider family

income and, cutting the sample roughly at the median, we classify participants with a

family income greater than $100 thousand as “High Income.” The next variable we con-

sider is Cognitive Reflection, the tendency to not follow one’s “gut” and reflect more on

a problem. Cognitive Reflection is measured using the standard three item test (Fred-

erick, 2005), classifying participants as “High CRT” if they correctly answered two or

three of the questions correctly. To assess financial literacy, participants answered a ten

item assessment developed by Knoll and Houts (2012). Utility Curvature and Discount

Factor are the participants’ preference parameters, which were estimated from the CTB

data using non-linear least squares, as described in the previous section. Finally, we

also consider how much is at stake for the participants when choosing among the three
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Table 1: Participant Characteristics and Balance
Text Tabular Consolidated

High Income (Y Family
i > $100k) 0.532 0.529 0.568

High CRT (CRTi >1) 0.468 0.549 0.614
High Financial Literacy (FLi > 7) 0.446 0.470 0.386
Utility Curvature (αi) 0.993 0.986 0.984
Discount Factor (δi) 0.999 0.999 0.998
Stakes U−1(EUBest − EUDominated) 2.560 2.378 2.022
Notes: Characteristic means reported, except for preference parameters

where the medians are reported.

cards. More precisely, we define Stakes to be the dollar value of the difference in expected

utility between the best card and dominated card that each participant saw.21 On the

question of balance, we find no significant pairwise differences across treatments on any

of these six measures and therefore conclude that random assignment to treatment was

successful.

III.1 Time Spent Deciding

We first consider whether the choice architecture affects how long the participants re-

quire to choose among the three GPR cards. The time, in seconds, that the participants

spent viewing the cards before making a selection is presented in Figure 5. First, we see

that participants in the Text treatment spend over two minutes, on average, evaluating

the GPR card options. When the information is presented in tabular form, participants

require approximately six seconds less to reach a decision, but the difference is not sta-

tistically significant (t = 0.62, p = 0.535 in a two-sided t-test). When the attributes

are consolidated, however, participants require significantly less time to select a card –

roughly two-thirds of the amount of time required in the Text treatment. The time spent

making a choice is significantly less in the Consolidated treatment compared to the Text

21As estimates of utility differences will naturally depend on the first-stage estimates of the time and
risk preferences that we used to formulate the card choices, to provide some degree of independence, we
use the DMPL, not CTB, parameters to calculate the Stakes variable in Table 1.
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(t = 3.37, p = 0.001) and Tabular treatments (t = 3.12, p = 0.002). Naturally it is not

always welfare-improving to spend less time making decisions, since rushing could lead

to poor outcomes. In this case the Consolidated treatment appears to help along both

dimensions on average, but that needn’t always be the case.

Figure 5: The time spent by participants (and the 95% C.I.s).

These findings are formalized in Table 2, which presents OLS and negative binomial

regression estimates of the time spent making a decision on indicators for the Tabular

and Consolidated treatments (with Text as the omitted condition). In all specifications,

we find those in the Consolidated treatment make their card selection in significantly

less time than those in either the Tabular or Text treatments, which themselves are

not significantly different from each other, consistent with the visual evidence in Figure

5. Columns (2) and (4) include the background controls described in Table 1: High

Income, High CRT, and High Financial Literacy, as well as the Stakes of the decision.
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We note that the High Income participants spend significantly less time on their decision

– around 28 seconds less – while those with greater financial literacy spend significantly

more time. One’s score on the Cognitive Reflection Test matters in the expected direction

(those exhibiting greater cognitive reflection spend more time considering their options),

but the difference is not statistically significant. As can be seen across columns of Table

2, the results are nearly identical when we use the negative binomial regressor instead.

Table 2: Time Spent Deciding on GPR/prepaid Card Choice

(1) (2) (3) (4)
OLS OLS NBinomial NBinomial

Tabular -1.775 -4.903 -1.618 -3.296
(13.798) (13.235) (12.473) (11.764)

Consolidated -38.643∗∗∗ -37.468∗∗∗ -41.708∗∗∗ -37.519∗∗∗

(11.704) (11.631) (12.390) (11.994)

Stakes (in $) -1.750 -1.697
(1.230) (1.350)

High Income (I) -28.536∗∗∗ -24.406∗∗

(10.648) (9.541)

High CRT (I) 6.547 4.597
(9.945) (9.581)

High Fin. Lit. (I) 27.996∗∗∗ 24.309∗∗

(10.534) (9.772)

Constant 126.969∗∗∗ 132.325∗∗∗

(10.468) (13.334)

Tabular - Consolidated 36.868∗∗∗ 31.873∗∗∗ 40.090∗∗∗ 33.707∗∗∗

(10.402) (10.718) (11.293) (11.384)
Observations 129 129 129 129
R2 or pseudo R2 0.084 0.183 0.010 0.019

Notes: The dependent variable is the number of seconds spent on the
GPR/prepaid card choice. Robust standard errors are reported in parenthe-
sis, and the negative binomial specifications report marginal effects. * p<0.10,
** p<0.05, *** p<0.01.
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III.2 Dominance Violations

Figure 6: Frequency with which participants chose the Best, Middle, and Worst cards in
each treatment.

We next consider the effect of presentation and number of attributes on the like-

lihood that the dominated (Worst) card is chosen. Since the Worst card is dominated

by the Middle card for all participants, by design, this assessment does not depend on

our preference elicitation, and serves as a non-structural method of assessing potential

welfare gains from the choice architecture interventions. The relative frequency of choices

across the three treatments is presented in Figure 6. In the Text treatment, where the

fees are buried in the fine print (see Figure 2), the dominated Worst card is chosen more

than 23% of the time. In the Tabular treatment, where participants face the same num-

ber of attributes presented with greater clarity, the likelihood of choosing the dominated

card decreases only slightly, to just under 19%. In the Consolidated treatment, where

23



participants face far fewer attributes, the likelihood that the dominated card is chosen

decreases substantially, to just 5% percent of the time.

Table 3: Choosing the Worst Card: Attribute Overload Evidence

(1) (2) (3) (4)
OLS OLS Probit Probit

Tabular -0.045 -0.042 -0.037 -0.031
(0.087) (0.090) (0.070) (0.070)

Consolidated -0.180∗∗ -0.177∗∗ -0.208∗∗ -0.208∗∗

(0.075) (0.079) (0.091) (0.089)

Stakes (in EU) -0.010 -0.014
(0.008) (0.011)

High Income (I) -0.047 -0.041
(0.068) (0.062)

High CRT (I) -0.029 -0.041
(0.070) (0.068)

High Fin. Lit. (I) -0.030 -0.028
(0.070) (0.068)

Constant 0.233∗∗∗ 0.307∗∗∗

(0.065) (0.091)

Tabular - Consolidated 0.135∗∗ 0.135∗ 0.171∗ 0.177∗∗

(0.067) (0.070) (0.092) (0.089)
Observations 129 129 129 129
R2 or pseudo R2 0.040 0.052 0.052 0.071

Notes: The dependent variable is 1 if the dominated card is chosen.
Robust standard errors are reported in parenthesis, and the probit
specifications report marginal effects. * p<0.10, ** p<0.05, ***
p<0.01.

The regression estimates presented in Table 3 formalize the results concerning the

likelihood of choosing the dominated card. The first two columns present linear proba-

bility models, in which the dependent variable is equal to 1 if the participant chose the

dominated card. The coefficients on the Tabular and Consolidated indicators confirm

the graphical evidence of Figure 6: the Tabular presentation is associated with a small
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but insignificant reduction in the likelihood of choosing a dominated option, whereas the

Consolidated treatment has a strong negative impact on the likelihood of selecting the

dominated choice and the effect is significant at the less than 5% level.

Additionally, as can be seen in Column (1), for instance, the difference between

the Tabular treatment and the Consolidated treatment is significant at the 5% level,

providing clear evidence of attribute overload, with the reduction in attribute space for

otherwise equivalent choices shrinking the fraction of people choosing a welfare-inferior

GPR/prepaid card by about 14 percentage points. Given the choice treatments are

balanced, it is no surprise that including our set of controls in Column (2) has little

impact on these estimates. The same is true of using probit estimates (Column 3 and 4).

Considering our estimates of the effects of the observables, increasing the stakes, one’s

income, one’s cognitive acuity and financial literacy all reduce the likelihood that the

dominated card will be chosen, but the effects, though appreciable, are not significant.

III.3 Best Card Choice

We have thus far seen that the Consolidated treatment significantly reduces the time that

participants require to make a selection and also significantly reduces their likelihood of

choosing a dominated option. The question remains whether the choice architecture

treatments also influence the participants’ ability to choose the Best card, given their

preferences, and using our estimates of their discount factor and utility curvature. Re-

garding this question, our results are less straightforward. In Figure 6 we see that both

reducing the number of attributes and using a table to summarize the attribute differ-

ences does increase the number of people who choose the Best card, but, not significantly

so. Comparing the magnitudes, contrary to our worst card results, here the tabular pre-

sentation of the card details has the stronger effect on choice. Table 4 presents the same

regression models as Table 3, except that the dependent variable is now equal to 1 if the
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participant chose the Best card. While the coefficient on Tabular is large, indicating that

the participants are 15 percentage points more likely to choose the best card when the

many attributes are presented in tabular rather than textual form, as noted, the result is

not quite significant at the 10% level (p = 0.13, to be precise). In fact, the only variable

that has a significant impact on the likelihood of choosing the best card is the size of the

Stakes, indicating that as the best option becomes more attractive relative to the other

cards, participants are significantly more likely to choose it.

Table 4: Choosing the Best Card

(1) (2) (3) (4)
OLS OLS Probit Probit

Tabular 0.154 0.161 0.152 0.151
(0.103) (0.101) (0.100) (0.096)

Consolidated 0.043 0.068 0.044 0.072
(0.107) (0.103) (0.109) (0.104)

Stakes (in EU) 0.041∗∗∗ 0.043∗∗∗

(0.012) (0.016)

High Income (I) -0.005 -0.011
(0.088) (0.085)

High CRT (I) -0.062 -0.053
(0.086) (0.084)

High Fin. Lit. (I) 0.050 0.054
(0.089) (0.086)

Constant 0.326∗∗∗ 0.240∗∗

(0.072) (0.096)

Tabular - Consolidated 0.111 0.093 0.108 0.079
(0.108) (0.107) (0.103) (0.100)

Observations 129 129 129 129
R2 or pseudo R2 0.019 0.096 0.014 0.075

Notes: The dependent variable is 1 if the best card is chosen. Ro-
bust standard errors are reported in parenthesis and the probit
specifications report marginal effects. * p<0.10, ** p<0.05, ***
p<0.01.
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III.4 Welfare

Given our estimates of the utility parameters for each participant, we are able to evaluate

the welfare consequences of the choice interventions we have implemented. We know that

consolidating the attributes significantly reduces the likelihood that the consumer will

choose the dominated card and that presenting the fee information in tabular form has a

substantial (though noisy and not quite statistically significant) effect on whether or not

the consumer picks the best card. While this all may be true, are the welfare differences

of any consequence?

To assess the welfare of our participants and to compare across them, we translate

utility gains into dollar equivalents. Specifically, using the convex time budget utility pa-

rameter estimates that we used to create the cards for each individual, we first assess two

differences: EU(chosen)−EU(dominated) = u1 and EU(best)−EU(dominated) = u2.

Inverting these expected utility differences results in their dollar equivalents, U−1(u1) =

$x1 and U−1(u2) = $x2. We then form the ratio of these two dollar amounts (x1/x2) to

determine the fraction of the feasible utility gains (measured in dollars) that the partic-

ipant achieved.

In the left panel of Figure 7 we present the mean fraction of the maximum dollar

gains that are achieved. As the reader can see, there are differences by treatment but

there is also considerable variation. As anticipated, both the Tabular and Consolidated

treatments improve welfare and the differences are not small, approximately a tenth of the

potential gains, but the confidence intervals are large too and therefore the improvements

are not significant at conventional levels.

We mostly confirm these results in the first two columns of Table 5. In Column (1),

we see that the Tabular treatment’s effect on the chances of choosing the best card has

a slightly larger effect on welfare than the Consolidated treatment’s effect on preventing

the worst card from being chosen. However, when we control for what is at stake (also
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Figure 7: The fraction of the maximum dollars achieved (and the 95% C.I.s).

Table 5: Fraction of Maximum Dollar Gains Achieved
(1) (2) (3) (4)

OLS OLS OLS OLS
Tabular 0.101 0.105 0.141 0.155

(0.097) (0.098) (0.120) (0.115)

Consolidated 0.055 0.071 0.212∗ 0.229∗∗

(0.100) (0.101) (0.115) (0.112)

Stakes (in dollars) 0.024∗∗∗ 0.037∗∗∗

(0.008) (0.010)

High Income (I) -0.001 0.125
(0.082) (0.095)

High CRT (I) -0.009 -0.019
(0.082) (0.091)

High Fin. Lit. (I) 0.035 -0.001
(0.084) (0.091)

Constant 0.442∗∗∗ 0.370∗∗∗ 0.259∗∗∗ 0.103
(0.070) (0.099) (0.091) (0.149)

Time cost deducted No No Yes Yes
Observations 129 129 129 129
R2 0.009 0.047 0.026 0.099

Notes: The dependent variable is the fraction of the dollar gains available

that are achieved; robust standard errors reported. * p<0.10, ** p<0.05,

*** p<0.01.
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in terms of dollars) in column (2), the treatment effects become more similar in size.

Again, however, in both cases the welfare “bumps” that participants get in expectation

from our interventions are noticeable but not significant. In addition, as was seen in our

assessment of choosing the best card, stakes matter in the allocation of welfare too. In

Column (2) when the stakes are larger, so too is welfare. In the end, worrying about

choice architecture does appear to benefit the consumers in our experiment but our

estimates on the size of this welfare gain lack precision.

One obvious problem with our welfare calculations so far is that we are not ac-

counting for the opportunity cost of time. If, indeed, “time is money,” then we should

account for the fact that some participants spend considerably more time struggling to

make a card choice (or, relatedly, account for the possibility of “thinking aversion,” a la

Ortoleva, 2013). To take into consideration the time cost of choice, in the right side of

Figure 7 we subtracted the opportunity cost of the time spent choosing beyond that of

the median participant. Specifically, we first calculated the median number of seconds

required to choose (93, in our case) and then calculated the difference between each in-

dividual’s time and the median. We multiplied positive differences by our measure of

the opportunity cost of time (the hourly average wage gain in the experiment), and then

subtracted this from the numerator of the participant’s welfare ratio described above.

When the difference was negative, the ratio was not “corrected.”22

The shape of the bar chart on the right side of Figure 7 is as expected knowing

what we do about how long it took to make choices (i.e., recall Figure 5). Because it took

considerably longer to choose in the Text treatment than in the Consolidated treatment,

the welfare gap between the two widens substantially.

After accounting for the opportunity cost of the time spent choosing in the second

22Our principal motivation for the introduction of what amounts to a kink in the opportunity cost
of time schedule is a desire to focus on the welfare losses of those who found the choice of cards an
especially difficult one. As a practical matter, we also wanted to limit the influence of those who took
almost no time at all, that is, those who did want to make an informed choice.
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two columns of Table 5, we see that the welfare gains of our interventions grow and

in the Consolidated treatment case the difference becomes significant. At the same

time, while people chose quicker in the Tabular treatment too, and this does cause our

estimate of the associated welfare increment to increase, it does so modestly. That

said, though the 14 percentage point difference seen in Column (3) is not significant,

it is economically relevant. Considering our other intervention, recall that it was the

Consolidated treatment wherein participants saved the most time. This is reflected in

the substantial increase in our estimate of how much better off participants are in this

treatment compared to the baseline. Consolidated participants are now estimated to be

more than a fifth better off than the Text participants and the difference is significant

at the 10% level without controls. Lastly, this Consolidated treatment effect on welfare

increases to almost a quarter and becomes significant at the 5% level when we, again,

control for the other factors in Column (4).23

III.5 Robustness

Our expansive experimental design allows us to examine the robustness of our results

on a number of dimensions. To begin, because we had participants do both the convex

time budget preference elicitation and the multiple price list elicitations, we can analyze

our choice data re-ordering the cards ex-post based on the multiple price list utility

parameters instead of those from the CTB. The comparison between the CTB estimates

and the calculated parameter values based on the DMPL data are presented in Figures A4

and A5 in the Appendix. The DMPL estimates are calculated using the same methods

as Andreoni and Sprenger (2012) and the comparisons across the two elicitations are

similar to their findings. While the DMPL produces greater variation in participants’

utility curvature, the upshot is that for only two people is there a difference in the utility

23Of course, the welfare effect of the opportunity cost of the time spent choosing depends directly on
how expensive it is to wait. We consider this more carefully in the next section.
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ordering of the cards presented and therefore there is essentially no change in Figure 6.

In other words, our results are not dependent on the preference elicitation protocol that

we employ.

Given the demographics and behavioral information that we collected from our

participants, we can also examine the possibility of heterogeneous treatment effects. This

evidence is compiled in Tables A1 through A4 in the appendix. In each case, we split

the sample at the median and examine whether participants who have low values for

the stakes involved, low family income, low scores on the cognitive reflection task, or

low financial literacy scores exhibit different responses to our interventions than subjects

with high values for these characteristics. In each table, the first two columns describe

the regression results for picking the worst card, the second two columns reports results

on picking the best card and the remaining two columns show the results of our welfare

analysis, accounting for the opportunity cost of time spent choosing a card.

In Table A1, we identify two effects. First, the Consolidated treatment has a much

larger impact on not choosing the worst card for people with a lot (of dollars) at stake

compared to other participants with not a lot at stake. Second, people without a lot at

stake have substantially greater welfare gains from the Consolidated intervention than

those with a lot to lose, mostly because the intervention allows them to make their choice

quickly.

Considering differences in familial income (Table A2), our results become more

pronounced relative to the Text/fine print baseline among lower income subjects. Within

this population, far fewer chose the worst card while the point estimate for the more

affluent participants is very close to zero. As a result, the low income participants

benefited substantially from the Consolidation intervention, achieving a welfare bump

more than a third of the possible gains.

The effect of the Consolidated treatment by scores on the cognitive reflection task
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(CRT) can be seen in Table A3. In this case, high scorers on the CRT are more than 25

percentage points less likely to pick the worst card when in the Consolidated treatment

than when in the baseline Text treatment, with a similar and slightly smaller reduction in

worst card choice for the Consolidated treatment in comparison to the Tabular treatment

(both effects being significant). For low scorers, however, there is no significant differ-

ence among treatments. This finding, interesting in its own right, allows us to assess a

possible interpretation of the underlying mental processes behind the attribute overload

phenomena that we document. One interpretation of the treatment effects is that they

may materialize because the challenge of consolidating numerical attributes oneself can

be overcome with the assistance of some of the choice architectures we provide. This can

be seen as attribute overload by another name, or, a more specific mental pathway that

constitutes one instantiation of a broader attribute overload phenomena. If the reduction

in worst cards for the Consolidated treatment is coming about because the treatment is

essentially reducing arithmetic difficulty, we would expect more pronounced treatment

effects for those with more limited baseline numerical sophistication. In our case, this

means we would expect the greater treatment effect for those with lower CRT scores,

as the CRT has also been shown to be a measure of both reflexivity and basic numer-

acy (Szasi, Szollosi, Palfi, and Aczel, 2017). However, as shown, it is not the subjects

with low CRT (and thus lower arithmetic numeracy) who are more susceptible to the

treatment effects, but rather the reverse, suggesting the attribute overload we document

is not coming about solely because of the difficulty in numerical processing alone, and,

that something more general about the complexity of the Tabular treatment is thwarting

good decision making.

Table A3 also shows that, even for CRT high scorers, the treatment effect does not

seem to clearly translate into a significant increase in welfare (though there is marginal

significance in this result). Lastly, in Table A4, we see that the Consolidated treatment

helps both those who score low and those who score high in financial literacy to avoid
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the worst card and achieve higher welfare. However, the effect is only significant for the

low financial literacy group.

Considering the robustness of our welfare estimates, we examine the implications

of our utility specification, the discount rate data we employ, and, our assumptions

about the opportunity cost of our participants’ time. To begin, as mentioned above,

by construction, our discount factor estimates (because they are daily) are bound to be

close to 1. In addition, we observe that the mean of our utility curvature estimates is

also close to 1. What if we simply assume all our participants are money maximizers

(i.e., α = δ = 1)? How would this affect our welfare results? In Table A5, we reproduce

Table 5 with just one change - now the dependent variable is the dollar equivalent of

the utility gains assuming simple additive utility, U(c1, c1+k) = (c1) + (c1+k). As one

can see, proxying the preferences with money maximization, leads to slightly smaller

welfare gains for the Consolidated and Tabular treatments because we throw away some

important variation in preference parameters, but the results are not that much worse

because the preferences are close to α = δ = 1 by design.

Focusing further on our time preference data, as part of our financial literacy survey

in the first part of the experiment, we asked participants about their credit cards -

specifically, the interest rates on these cards. In Table A6, we examine what happens if we

substitute the discount factors implied by these credit card interest rates for the deltas we

collected during the experiment, the underlying assumption being that participants who

are not liquidity-constrained (like students with large family incomes) should discount

rewards at the interest rate available to them. This alternative performs poorly. Not

only do the treatment differences vanish, the stakes involved fail to predict the gains

achieved, and, overall, the models fit poorly. Given that we know the Consolidated

treatment leads to significantly fewer choices of a dominated product, the fact that no

treatment difference in the welfare results for table A6 materializes makes us skeptical

of the appropriateness of this alternative discount factor (or, at least, of participants
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correctly reporting their credit card interest rates).

Lastly, for our baseline analysis of welfare we set the opportunity cost of time at

the stakes involved in the experiment, roughly $36 per hour. One might think that this

rate seems high and that the rate should be closer to that achievable at a job on campus.

Alternatively, one could argue that many students reject campus jobs at the going rate

because the wage is below their opportunity cost of time. Further, another plausible esti-

mate of time cost is one’s expectation of the wage achievable upon graduation. Because

all these estimates seem reasonable, in Table A7, we offer welfare estimates based on

each of them. It will be no surprise that the higher the opportunity cost, the larger the

welfare gains accruing to the two information architecture treatments (the Consolidated

treatment, in particular), but we find that these gains remain positive and significant to

the cutoff value of $22.50 per hour.24

III.6 External Validity

In this subsection we explore the relationship between our experimental findings and

naturally occurring products in the prepaid card market. In particular, we consider

a set of prepaid cards classified along the dimensions of consumer welfare and choice

architecture, and explore the consequences of the CFPB regulatory change described

earlier. The results, while imprecise, are consistent with what we observed in the lab.

Outside the lab, of course, reliance on proxies for card value and choice architecture

is almost inevitable. We consider two card value proxies: a measure determined by con-

sumer advocates and experts in the prepaid card market and, perhaps more convincingly,

a record of complaints made to the CFPB regarding specific cards, under the assump-

tion that complaints track consumer (dis)satisfaction and welfare. The first of these

24This threshold exceeds the wage for all college graduates, which is closer to $20 per hour, but
reflects the particular labor market prospects of our participants who are on the right tail of the income
distribution. At the lower rate, the Consolidated treatment effect is of course smaller (0.159) and not
quite significant (p = 0.117) at the 10% level.
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comes from a 2016 Consumer Reports review of 20 prepaid cards, and is derived from

the application of a simulated user’s spending patterns to a card’s actual fee structure,

as summarized in that review.

Proxies for choice architecture are, if anything, more elusive: CFPB estimates that

there are thousands of differentiated products and, to date, there is no exhaustive assess-

ment or classification of the presentation of fees and card attributes.25 For a small subset

of these (less than two dozen), however, the same consumer advocates have provided

such a measure: the aforementioned Consumer Reports review rated the cards on three

other dimensions, one of which was “fee accessibility and clarity,” measuring “the ease of

finding and understanding information and disclosures about the fees.” There were (just)

two categories, which we now denote “lower clarity” and “higher clarity.” Further, given

the advocacy arm of Consumer Reports’ prior advocacy for the specific CFPB reforms,

we believe that “lower clarity” cards resemble our baseline Text treatment, while “higher

clarity” cards are closer to our Tablular Treatment. Figure 8 presents the distribution

of card values by clarity, and suggests that when fee structure is less transparent, fees

for the representative user are higher or, in other words, card value is lower: almost half

of all the “more clarity” cards are deemed to be either “very good” or “excellent” value,

but none of the “less clarity” cards are.

Obviously, Figure 8 reflects only simulated user behavior rather than actual con-

sumer behavior, a limitation of the Consumer Reports data alone. However, we can turn

to an alternative data source, one that reflects the behavior of actual consumers: a CFPB

complaint database.26 The database is a collection of complaints on a range of consumer

financial products and services, including GPRs. For our purposes, we use the com-

25By one recent count, just over 2000 prepaid products were known to exist, with roughly one half of
these having unique names, and, the others being different versions of these distinguished by different
terms and conditions.

26As is true in the rest of paper, the research, methodology, analysis, and conclusions expressed in
this section are those of the authors only. They do not reflect or represent the complaint reporting
methodology, analyses, or observations of the Consumer Financial Protection Bureau.
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Figure 8: Histogram of Card Value Measure by Consumer Report Clarity Score

plaints about specific GPRs to proxy for product-specific consumer welfare. Given the

same Consumer Reports clarity measure, we are able to provide some limited evidence

of the CFPB regulatory reform that went into effect on April 1, 2019.

The reform, as discussed in the Introduction, required prepaid card issuers to im-

prove the transparency of their fee and terms disclosure in a standardized format akin to

our Tabular treatment. Our experimental findings suggest a particular pattern of com-

plaints over the pre and post period. For cards already in the higher clarity group, the

reform presumably changed little, and so constitute a control group of sorts. The trends

in complaint counts for this subset of cards is therefore the baseline against which to

measure other non-policy related changes to monthly card complaints. For lower clarity

cards, we expect the reform to bind and for consumer welfare to increase. A comparison

of the differences in complaints between the two clarity groups pre- and post-reform - that

is, the usual difference-in-difference - then provides an estimate of the treatment. Given

the small number of cards reviewed in the Consumers Report - and therefore the even

smaller numbers of control and treated units - the standard errors are of course too large

to produce precise estimates, but the raw pattern is consistent with our experimentally-
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informed predictions.

Figure 9: Complaints to CFPB Pre and Post Policy Reform (by Pre-Reform Clarity
Type)

Figure 9 illustrates the difference in average reported complaints (per card) between

the two types of cards. As one can see, the number of complaints associated with both

the lower clarity and higher clarity cards is relatively stable in the months prior to

the intervention, with the less clear cards receiving more complaints on a consistent

basis through the end of March 2019, as expected. In April, however, the complaint

difference begins to shrink and shrinks further in May. In fact, the difference in this

difference from March to April (the immediate scope for the regulation’s onset) falls by

approximately half. Alternatively (and more conservatively), pooling each of these pre

and post periods to generate a pre-period monthly average and a post-period monthly

average, the equivalent difference in the difference falls by closer to 15%. To reprise an

earlier observation, our comparisons are based on a very small number of cards, and we

are therefore reluctant to make too much of them. The point, however, is that using the

limited data available from the field appears to corroborate the lab result, namely, that

changing choice architecture to a more systematic tabular-style presentation can improve

consumer well-being.
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IV Conclusion

The purpose of this study is to evaluate policy interventions into the prepaid card market

that are based on the principles of choice architecture. Specifically, we designed exper-

imental treatments that aim to make choices more comparable and the presentation of

attributes more parsimonious. Given the prepaid card market has expanded to $300

billion, the implications of choice and welfare enhancing policies are surely large.

The unique elements of our experiment allow us to estimate consumer-level utility

functions that allow us to both individualize the set of prepaid cards that consumers face

and conduct a welfare analysis in addition to a more precise choice analysis. We find that,

when placed in conditions that simulate some products in the status quo marketplace,

consumers mostly make poor choices (based on their own estimated preferences). When

we examine a disclosure in the spirit of the CFPB’s short form, one that aims to present

information clearly and concisely, in a tabular format, and in a way that facilitates com-

paring terms across products, we find that it does help - more participants pick the card

that should maximize their stated preferences. When we consider an even more parsi-

monious choice architecture designed to reduce attribute overload too, we find that the

number of consumers making the best choice improves only slightly (relative to the status

quo) but that very few consumers make dominated choices (relative to either alternative

choice architecture), with this later finding consistently statistically significant at con-

ventional levels. This enhanced architecture also dramatically reduces the time required

to make a choice. Bearing this in mind, based on the preferences of our participants and

a measure of the opportunity cost of time, the initial intervention improves consumer

welfare somewhat but the enhanced policy improves welfare substantially. Furthermore,

considering heterogeneous treatment effects, the enhanced architecture interacts with

many of the important characteristics of our participants. This architecture appears to

differentially help those with a lot at stake, low family income, high cognitive ability
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and low financial literacy, in particular, to not make the worst choice. Given the demo-

graphics of the broader industry in which these cards are now common, these seem like

exactly the people who would benefit most from a policy intervention. Further, we find

tentative support for our results in the field, based on the relationship between, on the

one hand, fee clarity and, on the other, card value and card complaints for a subset of

prepaid cards.

Finally, one strength of the experimental design is that while the total amount of

information varied across treatments, the utility-relevant information was held constant.

This allowed for clear, causal inference about the effects of information and presentation

on choice. However, as mentioned above, applying this result directly to the field would

be challenging since the structures of most prepaid products do not allow one to alter

the total amount of information without also altering the utility-relevant information.

Indeed, it is important to consider whether optimal parsimony of product disclosure

is possible given the complexity of the products in the marketplace. Pew’s survey of

prepaid cards (2012), for example, found the most fee-laden prepaid cards have more

than 20 fees, and this does not consider the many terms and conditions that accompany

such products. While some reduction in the attribute space is possible, it is likely that in

many contexts the parsimony found in our enhanced choice architecture will be hard to

achieve. In these contexts where consolidation is either difficult or misleading, regulators

will be challenged to realize the full extent of the benefits of consolidated disclosure. In

this case, regulation of the financial products themselves, and not just the disclosures on

the packaging, may be in order. From the choice architecture perspective, when financial

products are complex and have a large number of attributes, the impact of improving

the organization and disclosure of those attributes may not be enough on its own. Large

improvements in choice and consumer welfare may require a more elemental reduction in

the number of attributes.
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