50 research outputs found

    Российский ΠΎΠΏΡ‹Ρ‚ транспортной ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации

    Get PDF
    Relevance. The present time can be called a period of accumulation of experience of national health systems in different countries of the world in the application of transport extracorporeal membrane oxygenation (ECMO) technology at the pre- and inter-hospital stages of evacuation of patients to specialized ECMO-therapy centers. The role of such centers is to provide timely advice and, if necessary, perform inter-hospital evacuation.Material and methods. The study summarized and analyzed with the help of the national register β€œRosECMO” the own experience of 13 hospitals in the Russian Federation, who performed 68 inter-hospital evacuations under ECMO conditions by different modes of transport in patients of different age groups with symptoms of circulatory and respiratory failure. The following parameters were evaluated: characteristics of transport ECMO, clinical manifestations of potentially negative effects of transport, hospital survival, as well as the effect of experience (less and more than 10 cases of transport ECMO) of the presented clinics on the difference in the results obtained.Results. Connecting patients to the ECMO device reduces the likelihood of death on the SOFA and APACHE IV scales by 1.2 times (p <0.0001) and 1.4 times (p<0.0001), respectively. Despite the absence of deaths during inter-hospital transportation of patients under ECMO conditions, 14.93% of patients died within 3 days from the moment of their execution, without a significant difference in clinics with different practical experience. The overall hospital survival rate of ECMO transport scenarios in all 13 clinics of the Russian Federation was comparable to the data of the international register 48.52% versus 48.81%, at the same time it was significantly lower (1.3 times) in the group of clinics with less clinical experience 40% versus 52.08% (p<0.0001).Conclusion. The results of the first stage of the study we obtained indicate the prospects of using the method of extracorporeal membrane oxygenation at the stage of inter-hospital evacuation, due to the effective stabilization of the patient’s condition and a significant reduction in the risks of the likelihood of death. Clinics with less clinical experience showed significantly worse results of hospital survival of patients who underwent inter-hospital transportation under conditions of extracorporeal membrane oxygenation compared to clinics with more clinical experience, which can be a significant argument in adopting a model for the development of specialized regional centers for extracorporeal membrane oxygenation. The experience accumulated over the past six years and the analysis of new data from the register of transport cases of extracorporeal membrane oxygenation of the national healthcare system will make it possible to formulate the correct trajectory for the development of the method of extracorporeal membrane oxygenation and its application, including at the stage of pre- and inter-hospital evacuations of patients.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. НастоящСС врСмя ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ накоплСния ΠΎΠΏΡ‹Ρ‚Π° Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… систСм здравоохранСния Π² Ρ€Π°Π·Π½Ρ‹Ρ… странах ΠΌΠΈΡ€Π° примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ транспортной ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации (ЭКМО) Π½Π° Π΄ΠΎΠΈ ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ этапах эвакуации ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² спСциализированныС Ρ†Π΅Π½Ρ‚Ρ€Ρ‹ ЭКМО-Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Роль ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² своСврСмСнном ΠΎΠΊΠ°Π·Π°Π½ΠΈΠΈ ΠΊΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΏΠΎΠΌΠΎΡ‰ΠΈ, Π° ΠΏΡ€ΠΈ нСобходимости ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ эвакуации.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдовании ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ рСгистра «РосЭКМО» собствСнный ΠΎΠΏΡ‹Ρ‚ 13 стационаров Π Π€, Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ²ΡˆΠΈΡ… 68 ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… эвакуаций Π² условиях ЭКМО Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ транспорта Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Ρ€Π°Π·Π½Ρ‹Ρ… возрастных Π³Ρ€ΡƒΠΏΠΏ с явлСниями циркуляторной ΠΈ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности. Π‘Ρ‹Π»ΠΈ ΠΎΡ†Π΅Π½Π΅Π½Ρ‹: характСристики транспортного ЭКМО, клиничСскиС проявлСния ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ воздСйствия транспортировки, Π³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½Π°Ρ Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ, Π° Ρ‚Π°ΠΊΠΆΠ΅ влияниС ΠΎΠΏΡ‹Ρ‚Π° (мСньшС ΠΈ большС 10 случаСв транспортного ЭКМО) прСдставлСнных ΠΊΠ»ΠΈΠ½ΠΈΠΊ Π½Π° Ρ€Π°Π·Π½ΠΈΡ†Ρƒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ².Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΊ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Ρƒ ЭКМО сниТаСт Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΡΠΌΠ΅Ρ€Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода ΠΏΠΎ шкалам SOFA ΠΈ APACHE IV Π² 1,2 Ρ€Π°Π·Π° (p<0,0001) ΠΈ 1,4 Ρ€Π°Π·Π° (p<0,0001) соотвСтствСнно. НСсмотря Π½Π° отсутствиС ΡΠΌΠ΅Ρ€Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… исходов Π² Ρ…ΠΎΠ΄Π΅ осущСствлСния ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… транспортировок ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π² условиях ЭКМО, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 3 суток ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΡ… выполнСния ΡƒΠΌΠ΅Ρ€Π»ΠΈ 14,93% ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· сущСствСнной Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ Π² ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ… с Ρ€Π°Π·Π½Ρ‹ΠΌ практичСским ΠΎΠΏΡ‹Ρ‚ΠΎΠΌ. ΠžΠ±Ρ‰Π°Ρ Π³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½Π°Ρ Π²Ρ‹ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ транспортных сцСнариСв ЭКМО Π²ΠΎ всСх 13 ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ… Π Π€ оказалась сопоставима с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ рСгистра 48,52% ΠΏΡ€ΠΎΡ‚ΠΈΠ² 48,81%, Π² Ρ‚ΠΎ ΠΆΠ΅ врСмя Π±Ρ‹Π»Π° достовСрно Π½ΠΈΠΆΠ΅ (Π² 1,3 Ρ€Π°Π·Π°) Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΠΊ с мСньшим клиничСским ΠΎΠΏΡ‹Ρ‚ΠΎΠΌ 40% ΠΏΡ€ΠΎΡ‚ΠΈΠ² 52,08% (p<0,0001).Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа исслСдования говорят ΠΎ пСрспСктивности примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации Π½Π° этапС ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ эвакуации, Π·Π° счСт эффСктивной стабилизации состояния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ достовСрного сниТСния рисков вСроятности Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода. Клиники с мСньшим клиничСским ΠΎΠΏΡ‹Ρ‚ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ достовСрно Ρ…ΡƒΠ΄ΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ выТиваСмости ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ выполняли ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΡƒΡŽ транспортировку Π² условиях ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°ΠΌΠΈ с большим клиничСским ΠΎΠΏΡ‹Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π² принятиС ΠΌΠΎΠ΄Π΅Π»ΠΈ развития спСциализированных Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации. НакоплСнный Π·Π° ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠΈΠ΅ ΡˆΠ΅ΡΡ‚ΡŒ Π»Π΅Ρ‚ ΠΎΠΏΡ‹Ρ‚ ΠΈ Π°Π½Π°Π»ΠΈΠ· Π½ΠΎΠ²Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… рСгистра транспортных случаСв ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ систСмы здравоохранСния ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ развития ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΉ оксигСнации ΠΈ Π΅Π³ΠΎ примСнСния Π² Ρ‚ΠΎΠΌ числС Π½Π° этапС Π΄ΠΎΠΈ ΠΌΠ΅ΠΆΠ³ΠΎΡΠΏΠΈΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… эвакуаций ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²

    Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid

    Get PDF
    International audienceWe study an initial and boundary value problem modelling the motion of a rigid body in a heat conducting gas. The solid is supposed to be a perfect thermal insulator. The gas is described by the compressible Navier-Stokes-Fourier equations, whereas the motion of the solid is governed by Newton's laws. The main results assert the existence of strong solutions, in an L p-L q setting, both locally in time and globally in time for small data. The proof is essentially using the maximal regularity property of associated linear systems. This property is checked by proving the R-sectoriality of the corresponding operators, which in turn is obtained by a perturbation method

    The effect of dynamical compressive and shear strain on magnetic anisotropy in a low symmetry ferromagnetic film

    Get PDF
    Dynamical strain generated upon excitation of a metallic film by a femtosecond laser pulse may become a versatile tool enabling control of magnetic state of thin _lms and nanostructures via inverse magnetostriction on a picosecond time scale. Here we explore two alternative approaches to manipulate magnetocrystalline anisotropy and excite magnetization precession in a low-symmetry _lm of a magnetic metallic alloy galfenol (Fe,Ga) either by injecting picosecond strain pulse into it from a substrate or by generating dynamical strain of complex temporal profile in the film directly. In the former case we realize ultrafast excitation of magnetization dynamics solely by strain pulses. In the latter case optically-generated strain emerged abruptly in the film modifies its magnetocrystalline anisotropy, competing with heat-induced change of anisotropy parameters. We demonstrate that the optically-generated strain remains efficient for launching magnetization precession, when the heat-induced changes of anisotropy parameters do not trigger the precession anymore. We emphasize that in both approaches the ultrafast change of magnetic anisotropy mediating the precession excitation relies on mixed, compressive and shear, character of the dynamical strain, which emerges due to low-symmetry of the metallic film under study

    Effect of magnetic anisotropy relaxation on laser-induced magnetization precession in thin galfenol films

    Get PDF
    The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magnetization and magnetic anisotropy of thin films of a ferromagnetic metal galfenol (Fe0.81Ga0.19) resulting from excitation with a femtosecond laser pulse. From the temporal evolution of the hysteresis loops we deduce that the magnetization MS and magnetic anisotropy parameters K recover within a nanosecond, and the ratio between K and MS satisfies the thermal equilibrium's power law in the whole time range spanning from a few picoseconds to 3 nanoseconds. We further use the experimentally obtained relaxation times of MS and K to analyze the laser-induced precession and demonstrate how they contribute to its frequency evolution at the nanosecond timescale

    Optically excited spin pumping mediating collective magnetization dynamics in a spin valve structure

    Get PDF
    We demonstrate spin pumping, i.e., the generation of a pure spin current by precessing magnetization, without the application of microwave radiation commonly used in spin pumping experiments. We use femtosecond laser pulses to simultaneously launch the magnetization precession in each of two ferromagnetic layers of a galfenol-based spin valve and monitor the temporal evolution of the magnetizations. The spin currents generated by the precession cause a dynamic coupling of the two layers. This coupling has a dissipative character and is especially efficient when the precession frequencies in the two layers are in resonance, where coupled modes with strongly different decay rates are formed

    Role of turbulence and electric fields in the formation of transport barriers and the establishment of improved confinement in tokamak plasmas through inter-machine comparison

    No full text
    Over the past decade new regimes of tokamak operation have been identified, whereby electrostatic and magnetic turbulence responsible for anomalous transport, can be externally suppressed, leading to improved confinement. Although turbulence measurements have been performed on many confinement devices, the insight gained from these experiments is relatively limited. To make further progress in the understanding of plasma turbulence in relation to improved confinement and transport barriers, an extensive experimental and theoretical research programme should be undertaken. The present INTAS project investigates the correlations between on the one hand the occurrence of transport barriers and improved confinement in the tokamaks TEXTOR & T-10 and Tore Supra as well as on the smaller-scale tokamaks FT-2, TUMAN-3M and CASTOR, and on the other hand electric fields, modified magnetic shear and electrostatic and magnetic turbulence using advanced diagnostics with high spatial and temporal resolution. This is done in a strongly coordinated way and exploiting the complementarity of TEXTOR and T-10 and the backup potential of the other tokamaks, which together have all the relevant experimental tools and theoretical expertise. Advanced theoretical models and numerical simulations are used to check the experimental results.Π—Π° останні Π΄Π΅ΡΡΡ‚ΡŒ Ρ€ΠΎΠΊΡ–Π² Π±ΡƒΠ»ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Π½ΠΎΠ²Ρ– Ρ€Π΅ΠΆΠΈΠΌΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΡ–Π², Ρƒ яких СлСктростатична Ρ– ΠΌΠ°Π³Π½Ρ–Ρ‚Π½Π° Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½Ρ–ΡΡ‚ΡŒ, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Π»ΡŒΠ½Π° Π·Π° аномальний пСрСнос, ΠΌΠΎΠ³Π»Π° Π·Π°Π³Π»ΡƒΡˆΠ°Ρ‚ΠΈΡΡ ΡˆΠ»ΡΡ…ΠΎΠΌ Π·ΠΎΠ²Π½Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ, Ρ– Ρ‚ΠΈΠΌ самим досягалося ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π΅ утримання. ΠΠ΅Π·Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° Ρ‚Π΅, Ρ‰ΠΎ дослідТСння турбулСнтності проводилися Π½Π° Π±Π°Π³Π°Ρ‚ΡŒΠΎΡ… установках, розуміння Ρ†ΠΈΡ… процСсів Π·Π°Π»ΠΈΡˆΠ°Ρ”Ρ‚ΡŒΡΡ Π΄ΠΎΡΠΈΡ‚ΡŒ ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½ΠΈΠΌ. Для досягнСння подальшого прогрСсу Π² Ρ€ΠΎΠ·ΡƒΠΌΡ–Π½Π½Ρ– ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΎΡ— турбулСнтності Π· погляду ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½ΠΎΠ³ΠΎ утримання Ρ– транспортних Π±Π°Ρ€'Ρ”Ρ€Ρ–Π² Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½Ρ– інтСнсивні Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Ρ– Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– дослідТСння. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ INTAS спрямовано Π½Π° Π·'ясування корСляції ΠΌΡ–ΠΆ виникнСнням транспортних Π±Π°Ρ€'Ρ”Ρ€Ρ–Π² Ρ– ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½ΠΎΠ³ΠΎ утримання Π² Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠ°Ρ… TEXTOR, Π’-10 Ρ– Tore Supra, Π° Ρ‚Π°ΠΊΠΎΠΆ Ρƒ Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠ°Ρ… ΠΌΠ°Π»ΠΈΡ… Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² Π€Π’-2, ВУМАН-3М ΠΈ CASTOR, Π· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±ΠΎΠΊΡƒ, Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ полями, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΠΌ ΡˆΠΈΡ€ΠΎΠΌ Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π½ΠΎΡŽ Ρ– ΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΎΡŽ Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½Ρ–ΡΡ‚ΡŽ, Π· Ρ–Π½ΡˆΠΎΠ³ΠΎ Π±ΠΎΠΊΡƒ, Π· використанням ΠΏΠ΅Ρ€Π΅Π΄ΠΎΠ²ΠΈΡ… діагностичних засобів Π· високим просторовим Ρ– тимчасовим розділСнням. ДослідТСння ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΡΡ‚ΡŒΡΡ Π· високим ступСнСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–Ρ— Ρ€ΠΎΠ±Ρ–Ρ‚ Ρ– використанням Π²Π·Π°Ρ”ΠΌΠΎΠ΄ΠΎΠΏΠΎΠ²Π½ΡŽΠ²Π°Π½ΠΎΡΡ‚Ρ– установок TEXTOR Ρ– Π’-10, Ρ– моТливостСй Ρ–Π½ΡˆΠΈΡ… Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΡ–Π², Ρ‰ΠΎ Π² сукупності Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½Ρƒ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρƒ Ρ– Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρƒ ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€ΠΊΡƒ. Для ΠΏΠ΅Ρ€Π΅Π²Ρ–Ρ€ΠΊΠΈ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Π±ΡƒΠ΄Π΅ використано Π½ΠΎΠ²Ρ– Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ– Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½Π΅ модСлювання.Π’ послСдниС Π΄Π΅ΡΡΡ‚ΡŒ Π»Π΅Ρ‚ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠΎΠ², Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… элСктростатичСская ΠΈ магнитная Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ, отвСтствСнная Π·Π° Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос, ΠΌΠΎΠ³Π»Π° ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒΡΡ ΠΏΡƒΡ‚Ρ‘ΠΌ внСшнСго воздСйствия, ΠΈ Ρ‚Π΅ΠΌ самым Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π»ΠΎΡΡŒ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ΅ ΡƒΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ исслСдования турбулСнтности ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π½Π° ΠΌΠ½ΠΎΠ³ΠΈΡ… установках, ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ этих процСссов остаётся вСсьма ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ. Для достиТСния дальнСйшСго прогрСсса Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ турбулСнтности с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ удСрТания ΠΈ транспортных Π±Π°Ρ€ΡŒΠ΅Ρ€ΠΎΠ² Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ интСнсивныС ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ тСорСтичСскиС исслСдования. ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ INTAS Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π½Π° выяснСниС коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ транспортных Π±Π°Ρ€ΡŒΠ΅Ρ€ΠΎΠ² ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ удСрТания Π² Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠ°Ρ… TEXTOR, Π’-10 ΠΈ Tore Supra, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠ°Ρ… ΠΌΠ°Π»Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Π€Π’-2, ВУМАН-3М ΠΈ CASTOR, с ΠΎΠ΄Π½ΠΎΠΉ стороны, ΠΈ элСктричСскими полями, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ ΡˆΠΈΡ€ΠΎΠΌ ΠΈ элСктростатичСской ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, с использованиСм ΠΏΠ΅Ρ€Π΅Π΄ΠΎΠ²Ρ‹Ρ… диагностичСских срСдств с высоким пространствСнным ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ. ИсслСдования проводятся с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚ ΠΈ использованиСм взаимодополняСмости установок TEXTOR ΠΈ Π’-10, ΠΈ возмоТностСй Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΎΠΊΠ°ΠΌΠ°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ Π² совокупности обСспСчит Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ. Для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ тСорСтичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ числСнноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    Russian experience of transport extracorporeal membrane oxygenation

    No full text
    Relevance The present time can be called a period of accumulation of experience of national health systems in different countries of the world in the application of transport extracorporeal membrane oxygenation (ECMO) technology at the pre- and inter-hospital stages of evacuation of patients to specialized ECMO-therapy centers. The role of such centers is to provide timely advice and, if necessary, perform inter-hospital evacuation. Materia l and me thods The study summarized and analyzed with the help of the national register "RosECMO" the own experience of 13 hospitals in the Russian Federation, who performed 68 inter-hospital evacuations under ECMO conditions by different modes of transport in patients of different age groups with symptoms of circulatory and respiratory failure. The following parameters were evaluated: characteristics of transport ECMO, clinical manifestations of potentially negative effects of transport, hospital survival, as well as the effect of experience (less and more than 10 cases of transport ECMO) of the presented clinics on the difference in the results obtained. RESULT S Connecting patients to the ECMO device reduces the likelihood of death on the SOFA and APACHE IV scales by 1.2 times (
    corecore