10,276 research outputs found

    Treatment of failed articular cartilage reconstructive procedures of the knee: A systematic review

    Get PDF
    Background: Symptomatic articular cartilage lesions of the knee are common and are being treated surgically with increasing frequency. While many studies have reported outcomes following a variety of cartilage restoration procedures, few have investigated outcomes of revision surgery after a failed attempt at cartilage repair or reconstruction. Purpose: To investigate outcomes of revision cartilage restoration procedures for symptomatic articular cartilage lesions of the knee following a previously failed cartilage reconstructive procedure. Study Design: Systematic review; Level of evidence, 4. Methods: A literature search was performed by use of the PubMed, EMBASE, and MEDLINE/Ovid databases for relevant articles published between 1975 and 2017 that evaluated patients undergoing revision cartilage restoration procedure(s) and reported outcomes using validated outcome measures. For studies meeting inclusion criteria, relevant information was extracted. Results: Ten studies met the inclusion criteria. Lesions most commonly occurred in the medial femoral condyle (MFC) (52.8%), with marrow stimulation techniques (MST) the index procedure most frequently performed (70.7%). Three studies demonstrated inferior outcomes of autologous chondrocyte implantation (ACI) following a previous failed cartilage procedure compared with primary ACI. One study comparing osteochondral allograft (OCA) transplant following failed microfracture (MFX) with primary OCA transplant demonstrated similar clinical outcomes and graft survival at midterm follow-up. No studies reported outcomes following osteochondral autograft transfer (OAT) or newer techniques. Conclusion: This systematic review of the literature reporting outcomes following revision articular cartilage restoration procedures (most commonly involving the MFC) demonstrated a high proportion of patients who underwent prior MST. Evidence is sufficient to suggest that caution should be taken in performing ACI in the setting of prior MST, likely secondary to subchondral bone compromise. OCA appears to be a good revision treatment option even if the subchondral bone has been violated from prior surgery or fracture. </jats:sec

    Towards the theory of coherent hard dijet production on hadrons and nuclei

    Get PDF
    We carry out a detailed calculation of the cross section of pion diffraction dissociation into two jets with large transverse momenta, originating from a hard gluon exchange between the pion constituents. Both the quark and the gluon contribution are considered and in the latter case we present calculations both in covariant and in axial gauges. We find that the standard collinear factorization does not hold in this reaction. The structure of non-factorizable contributions is discussed and the results are compared with the experimental data. Our conclusion is that the existing theoretical uncertainties do not allow, for the time being, for a quantitative extraction of the pion distribution amplitude.Comment: 45 pages, latex, 17 figures, final version to appear in Nuclear Physics

    The use of the Winograd matrix multiplication algorithm in digital multispectral processing

    Get PDF
    The Winograd procedure for matrix multiplication provides a method whereby general matrix products may be computed more efficiently than the normal method. The algorithm and the time savings that can be effected are described. A FORTRAN program is provided which performs a general matrix multiply according to this algorithm. A variation of this procedure that may be used to calculate Gaussian probability density functions is also described. It is shown how a time savings can be effected in this calculation. The extension of this method to other similar calculations should yield similar savings

    Diquark Condensates and Compact Star Cooling

    Full text link
    The effect of color superconductivity on the cooling of quark stars and neutron stars with large quark cores is investigated. Various known and new quark-neutrino processes are studied. As a result, stars being in the color flavor locked (CFL) color superconducting phase cool down extremely fast. Quark stars with no crust cool down too rapidly in disagreement with X-ray data. The cooling of stars being in the N_f =2 color superconducting (2SC) phase with a crust is compatible with existing X-ray data. Also the cooling history of stars with hypothetic pion condensate nuclei and a crust does not contradict the data.Comment: 10 pages, 5 figures, accepted for publication in Ap

    Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase

    Full text link
    We present an approximate gap equation for different crystalline structures of the LOFF phase of high density QCD at T=0. This equation is derived by using an effective condensate term obtained by averaging the inhomogeneous condensate over distances of the order of the crystal lattice size. The approximation is expected to work better far off any second order phase transition. As a function of the difference of the chemical potentials of the up and down quarks, δμ\delta\mu, we get that the octahedron is energetically favored from δμ=Δ0/2\delta\mu=\Delta_0/\sqrt 2 to 0.95Δ00.95\Delta_0, where Δ0\Delta_0 is the gap for the homogeneous phase, while in the range 0.95Δ01.32Δ00.95\Delta_0-1.32\Delta_0 the face centered cube prevails. At δμ=1.32Δ0\delta\mu=1.32\Delta_0 a first order phase transition to the normal phase occurs.Comment: 11 pages, 5 figure

    Self-dual Yang-Mills fields in pseudoeuclidean spaces

    Full text link
    The self-duality Yang-Mills equations in pseudoeuclidean spaces of dimensions d8d\leq 8 are investigated. New classes of solutions of the equations are found. Extended solutions to the D=10, N=1 supergravity and super Yang-Mills equations are constructed from these solutions.Comment: 9 pages, LaTeX, no figure

    Local CP-violation and electric charge separation by magnetic fields from lattice QCD

    Get PDF
    We study local CP-violation on the lattice by measuring the local correlation between the topological charge density and the electric dipole moment of quarks, induced by a constant external magnetic field. This correlator is found to increase linearly with the external field, with the coefficient of proportionality depending only weakly on temperature. Results are obtained on lattices with various spacings, and are extrapolated to the continuum limit after the renormalization of the observables is carried out. This renormalization utilizes the gradient flow for the quark and gluon fields. Our findings suggest that the strength of local CP-violation in QCD with physical quark masses is about an order of magnitude smaller than a model prediction based on nearly massless quarks in domains of constant gluon backgrounds with topological charge. We also show numerical evidence that the observed local CP-violation correlates with spatially extended electric dipole structures in the QCD vacuum.Comment: 19 pages, 7 figures. Additional lattice results about the induced electric dipole structure, extended model description, specified terminology. Version published in JHE

    The Ginzburg-Landau Free Energy Functional of Color Superconductivity at Weak Coupling

    Get PDF
    We derive the Ginzburg-Landau free energy functional of color superconductivity in terms of the thermal diagrams of QCD in its perturbative region. The zero mode of the quadratic term coefficient yields the same transition temperature, including the pre-exponential factor, as the one obtained previously from the Fredholm determinant of the two quark scattering amplitude. All coefficients of the free energy can be made identical to those of a BCS model by setting the Fermi velocity of the latter equal to the speed of light. We also calculate the induced symmetric color condensate near TcT_c and find that it scales as the cubic power of the dominant antisymmetric color component. We show that in the presence of an inhomogeneity and a nonzero gauge potential, while the color-flavor locked condensate dominates in the bulk, the unlocked condensate, the octet, emerges as a result of a simultaneous color-flavor rotation in the core region of a vortex filament or at the junction of super and normal phases.Comment: 32 pages, Plain Tex, 3 figure

    On highest-energy state in the su(1|1) sector of N=4 super Yang-Mills theory

    Full text link
    We consider the highest-energy state in the su(1|1) sector of N=4 super Yang-Mills theory containing operators of the form tr(Z^{L-M} \psi^M) where Z is a complex scalar and \psi is a component of gaugino. We show that this state corresponds to the operator tr(\psi^L) and can be viewed as an analogue of the antiferromagnetic state in the su(2) sector. We find perturbative expansions of the energy of this state in both weak and strong 't Hooft coupling regimes using asymptotic gauge theory Bethe ansatz equations. We also discuss a possible analog of this state in the conjectured string Bethe ansatz equations.Comment: 23 pages, Late

    Alternativity and reciprocity in the Cayley-Dickson algebra

    Full text link
    We calculate the eigenvalue \rho of the multiplication mapping R on the Cayley-Dickson algebra A_n. If the element in A_n is composed of a pair of alternative elements in A_{n-1}, half the eigenvectors of R in A_n are still eigenvectors in the subspace which is isomorphic to A_{n-1}. The invariant under the reciprocal transformation A_n \times A_{n} \ni (x,y) -> (-y,x) plays a fundamental role in simplifying the functional form of \rho. If some physical field can be identified with the eigenspace of R, with an injective map from the field to a scalar quantity (such as a mass) m, then there is a one-to-one map \pi: m \mapsto \rho. As an example, the electro-weak gauge field can be regarded as the eigenspace of R, where \pi implies that the W-boson mass is less than the Z-boson mass, as in the standard model.Comment: To be published in J. Phys. A: Mathematical and Genera
    corecore