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ABSTRACT :

The Winograd procedure for matrix multiplication [S. Winograd,

Comm. on Pure and_Applied Math,, 23, 1970] provides a meth
whereby general matrix products may be computed more efficiently
than the normal method. In this report, we describe the algorithm
and the time savings that can be effected. ¢+ FORTRAN grogram is
provided which performs a general macrix muitiply according to this

algorithm,

Additionally, we describe a variation of this procedure that may
be used to calculate Gaussian probability density functions., It is
shown how a time savings can be effected in this calculation. The
extension of this method to other similar calculations should yield
similar savings.
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Introduction :

In this paper, we show the Winograd“) procedure for
computing matrix products can be applied to various calculations
used in digital processing of remotely sensed data, The basic
procedure is described, a FORTRAN program for general matrix
multiplication is provided, and an example (computation of Gaussian
probability density functions) is worked out showing the regions
where it ~mputationally faster and the amount of time savings
involved, Of course, there are many other calculations where this
procedure can be effectively utilized,

Essentially, the Winograd procedure effects a time savings in
computing matrix products by trading off some of the multiplications
involved for additions (multiplies are usually slower operations on a
computer than adds). A relatively small amount of additional storage
is required, but a significant decrease in the mumber of multiplies
(up to a factor of 2 for the case of multiplying two n x n matrices,
if n is sufficiently large) can be gained. Ilowever, one must
sacrifice some numerical stability in employing this prncedure(z).

In the next section, we describe the general matrix multipli-
cation procedure developed by Winograd and compare it with the
standard method. In Section III, we aescribe a variation of this
procedure for the computation of Gaussian probability density
functions. An appendix containing 2 FORTRAN program for general

matrix multiplication is provided,
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The Winograd Algorithm:

Let A:(a”) be a p x q matrix, B=(b a qxs

ij)l

matrix, C=(c.j), a px s matrix, x=(xi), a q-vector,

i
and y=(v i), a p-vector. The standard method for computing

y=AXx is

q
y, = E aij xj i=1,2, ..,p (1)

and for computing C=AB is

a b

c iq

‘=])2""l
qj y P (2)
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ij-
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Thus to compute y in this manner, p q multiplies and p(q-1)
adds are necessary; and to compute C, p q s multiplies and
p s(q-1) adds,

The Winograd procedure consists of rewriting eqs. (1) and (2)
so that some quantities are precomputed, This procedure is based

on the identity

b, +

8ix Dy 8y k41 P

k+1

(a5 + by )@y g + b)) = a5 8 k Pk+1
Similar identities of a higher order may be used to construct other

algorithms, but, for our purposes here, thesc are not of much

interest. Following Winograd's notation, we let |d| = largest
4 i ’ £



integer < d and [d] = smallest integer > d, with 2 = [%q],

the Winograd procedure, then, for computing vy

L
%i T 5 8,2u-1 + %,2u =L:Z...0p (30)

uél
£
L E X2u-1 X2u (3b)
u=])
and
(1
z(ai,Zu-l L x2u)(ai,2u M x2u~l)
u=]
yi -—-—< g] - N if q=2'.
L
) (8, g9y-1 + Xg)(8) 5y + X5,.)
u=|
) g, - 0 - aiq xq if q=22 + 1 (3c)

This algorithm requires p |[2q| + 2(p+1) multiplications and
p(l2q] +2-1 adds. If we have t y's to compute using the
same A and t x's, the operation counts become

tp +t- (plaql+ 2) multiplies and p (2-1) + t -(z-l +
p(22 +1 + I%_q])) adds, since the g.'s need not be
recomputed, Table 1 shows the approximate (ignoring indexing,
etc,) time savings to be expected for computing 100 y's for
various values of p and q for a ratio of the machine multiply
time Tm to the add time T, of 2.7 (the approximate value

for an IBM 370/155). We see from this table that for low values
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of p and q, there is a net loss e for large values, up to
a 16% savings results,

The extension of this concept to full matrix multiplication is
(for C=AB)

2
8 " Z a,,2u-1 %, 2u
=] (4a)

b2u-l,j b2u,j
1 (4b)

=3
R
I
ni~J}e=

g
),. (ai,2u-l v b:!u,j)(ai,Zu * b2u-|,j)
=]

c

if q=21¢

«0

i~y
" -{‘
7)) @y gy by, P 5yt bayy, )
u=]}

Py " 'nj + aiq bqj if q=22 + 1

for jnl . Biisvesp 0 Ju),RieineB (4c)

This requires p s [2q] + ¢ (p+s) multiplies and (2-1)(p+s) +
ps(l#aq]+ 2+ 1) adds. For p=q=s=n and n large,
this reduces to =~ 2 n3 + n2 multiplies and % n3 + n2 adds,
which can effect a savings in computation time over the standard
procedure which requires n3 multiplies and n3 - n2 adds ;
using the ratio of 2,7:1 for multiplies to adds, in fact a savings

always occurs for n > 5,



A FORTRAN subroutine WNOMUL  which performs matrix

multiplication according to this algorithm is listed in the appendix.
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Calculation of Gaussian Probability Density Functions :

The n-dimensional probability de ity for a normal population
with mean u and covariance K is given by

n i
t(x) = (2m) = [K| exp[(x-u)" k7 N(x-u) ]

In this section, we shall concern ourselves only with the calculation

of the quadratic form (the argument of exp), given u and [. and

D where . and D are the modified Cholesky decomposition(3)

of K, i.e. K = LDL ] , with L. being unit lower triangular
and D, diagonal with positive diagonal entries. Then we can write

T

(x-u)T k" l(x-u) = (x-u)T L1 p! L™ N(x-u)
=y ply
o2
= E yi / di (5)
(=1
where
y= L N(x-u) (6)

Eq. (6) can be sulved by forward substitution, i.e,

i-1
gy = A%y = wg) = ) Lij ¥y (7)
j=1

where [, = (J,ij). We then can use the Winograd procedure on the
2
summation term in eq. (7). (The standard method requires 2_~1T

multiplies and ("'2)2("' 1) adds to evaluate this term). We note



that for evaluating this expression for more than one x, we can
use a variation of the algorithm for full matrix products,

Taking special note of the struct. e of L, we then use

T Z Li,2s8-1 %i,2s
s=1]
}i=3,4....,n (8)
r
i
" = E, Yag-1 Yos
s=1 Y,
i-1
with r = I__Z J This is equivalent to
E
"y =¥, Yo 1=2,3,...,] 7 | (9)
M2y = M24-1

I

M2g+1 = M25-1 * Y251 Y25 y=2,3,...,|231 |

We then have, with

i-1

ay = ). Bij Vi
i=1

a, = 0

8y = 29, ¥,



'
i
Y (b g5y * Yap) (4 gy + ¥ayy)
i=1
gy - 0y if i odd
5 =1,

Zl“'i,zj-l t ¥gy) (24 25 + ¥oy.y)
j:

&g = My * 25 41 Yi-g if i even

i=3,4,...,0 (10)

-

Since = depends only on L., it can be used in evaluating eq. (7)
for various x. ‘Table 2 shows the number of operations necessary
for computing each of the various parts of the quadratic form. Note
that the Winograd algorithm is actually slower when cvaluating this
expression for just one x, but for more than one x, the pre-
computed values of ¢ may be used, Table 3 shows the ratio of
times for the two methods for the case of Tm/Ta = 2,7 for
computing m of the quadratic terms for various values of n,
Note that a net savings occurs only in the lower right region,
Also shown in Table 4 is the minimum ratio of Tm/Ta for the
Winograd precedure to be faster for computing m quadratic terms,
Often in remote sensing calculations (e.g. maximum likelihood
classification), many probability density functions must be evaluated
over the same se: of data vectors. In this case, one may pre-
compute both the e's and the n's., Table 5 shows the asymp-
totic ( ¢ precomputed and 1n computed only for the first class)
time savings to be expected for T /T = 2,7 for k classes

for various values of n. Note that a net savings results for n > 4,
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Conclusions :

The Winograd matrix multiplication sche'ae can produce a time
savings in various computations using large order matrices in the
digital processing of remotely sensed data, We have shown how a
modification of this procedure may be applied to the calculation of
Gaussian probability density functions, and indicated how this may be
extended to other computations. For large dimensions, or a large
number of points, there can be some time savings, but the user
should determine the expected time difference using the value of
Tm/Ta of the computer to be used. A further study should be
undertaken to investigate the effects of decreased numerical stability

of this algorithm in various applications,
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APPENDIX

SURROUT IN® wNOMUL( AsP sQ el A RS IB4Co 1L TMP)

THIS ROUTINE USFS THF wWINCGRAD PRNCFDUAT T2 MULTIPLY Twa0 MATRICFS
IeFe C=A*3 WHERF A 1S P ® Q; By Q * S; € Cy, P » S5,

IA IS THE LENGTH NF THFE COLS NF A AS DIMENSIONEND IN THE MAIN PROG.
I8 & IC ARS SIMILAR QUANTITIES FOR B8 & C

C MUST NOT COCCUPY THF SAME STOIAGF AS A 22 H

TMP IS WIPKING STORAGE N7 LENGTH (GF 45+P

INTFGER Py QeSeUsUl 4U
RFEFAL A(lA.,Q), H(l v 5) OL(ICQS,QTMQ(l'
DOUBLF PRECISICN $S.S1.52

LOGICAL O0DD
IFTA=P

L=Qr2

COMPUTE THF X1tS

DO 10 I=1,.P

5S==A(l.1)*A(1,2)
IF (LelLTe2) GO T 10
NN 15 U=2,L
Ul =2=%y
U2=Ulm]
SS=55=A(1.U2)%A(T,U1)
TMP(I)=SS

DN 20 J=1,5
SS=mu(1 4J)*3(2,J)
IF (LeL Te2) GO T2 20
NO 2% U=Z.L
Ul=2%*y
Uz=ulw=i

SS=SSel (U2 +J)=B(UL +J)
TMPRP(IFTA+J)=S5S
CDD=eFALSL o
IF (?*L-N‘QQ' ODD=e TFUE o

COMPUTE THE C(1.,J)°'S

DO 30 I=1,P
S1=TMO( 1)
33=A(1.Q)
NN 30 J=1.5
SH=S1+4TMP(IETA+J)
IF ( «NNTLODD) GG TO 37
SS=85+S2=H{(QJ)
DN 35 U=l ,L
Ul=2+%y
U2=i)1m=?
SE=ESE+(A(1U2)¢H(UL J))I*(A(TsUIDIHB(UZJ))
C(lsu)=cSs
RE TURN
END

ORIGINAL PAGE IS
OF POOR QU '
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