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1.	 lilt rmlut U( )n :

In this paper, we show the Winograd(  procedure for

computing n ► atrix products can be applied to various calculations

used in digital processing of remotely sensed data. The basic

procedure is described, a I'URTRAN program for general matrix

multiplication is provided, and an exanil-!e (computation of Gaussian

}p robability density functions) is worked out showing; the regions

where it	 -Imputatio; ally faster and the amount of time savings

involved. Of course, there are many other calculations where this

procedure can be effectively utilized.

Essentially, the Winograd procedure effects a time savings in

computing matrix products by trading off some of the multiplications

involved for additions (multiplies are usually slower operations on a

computer than adds). A relatively small amount of additional storage

is required, but a significant decrease in the member of multiplies

(tip to a factor of 2 for the case of multiplying two n x ii matrices,

if	 n	 is Gufficiertly large) can be gained. However, one must

sacrifice some numerical stability in employing this procedure(2).

In the next section, we describe the general matrix multipli-

cation procedure developed by Winograd and compare it with the

standard method.	 In Section 111 ; we uescribe a variation of this

procedure for the computation of Gaussian probability density

functions. An appendix containing a FORTRAN progru m for general

matrix multiplication is provided.
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II. The Winograd Algorithm :

Let A =(a ij ) he a p x q matrJ%, B=(b il ), a g x s

matrix, C= (c i j ) , a p x s matrix, x= l x i ), a q-vector,

and y = (y 
i)
	 a p-vector. The standard method for computing

y = A x is

(I

Al i	 I	
a i	 x	 i-1,2,	 ...p

l	 j

j=1

and for computing C=AB is

q

cij	 -- a 
i ^l 

b
qj	

i=1,2,...,p	
(2)

=1	 j=1,2,...,s

Thus to compute y in this manner, p q multiplies and p (q - 1 )

adds are necessary; and to compute C, p q s multiplies and

p s (q - 1 ) adds,

The Winograd procedure consists of rewriting eqs. (1) and (2)

so that 4ome quantities are precomputed. 'Mis procedure is based

on the identity

a ik b 	 + a i, k+ 1 bk+1

= (a ik + b k+1 )(a i, k+1 + 1'k ) - aik a i, k+1 - 1'k bk+1

Similar identities of a Nigher order may be used to construct other

algorithms, but, for out purposes here, these• are not of much

interest. Following Winograd's notation, we let I d J = largest

1
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integer	 s d and	 f d l= sma llest integer	 > d,	 with	 E=	 f,	 q J,

the Winograd I)roceduty , then,	 for conilming y

3

\e

u=1

u=1

ai, 2u- I	 '	 a i, 2u

X 2u-I ' x 2u

i=1,2,...,p	 (3a)

(3b)

and

I	 ^-
(a i, 2u- 1	 + X 2u )(a i, 2ti	

+ x 2u- I )

u=1

y i =	 ^i - r	 if c1=2 e

( à i, 2u- I	 + X 2st )(a i, 2u + X 2u- I) -
u=1

^ i - Ti - a i q x 	 if q=21 i i	 (3c)

This algor°thm requires p I q 1 4- 1(p+I) multiplications and

p ( 1 1, q I + ,e- I adds.	 if we have t y 's to compute using the

same A and t x's, the operation counts become

i p --- t - (p I"L( I I + t ) multi}] ies and p ( A - I ) + t - (I - I A

p(21+1+1^yl)^

recomputed. Table 1

etc. ) time savings to

various values of p

tit-no	 'I	 to the adi
n^

for an IBM 370/155).

adds, since the p i 's need not be

shows the approximate (ignoring indexing,

be expected for computing 100 y's for

anti q for a ratio of the machine multiply

I time T t of 2.7 (the approximate value

We see from this table that for low values
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of p and q , therc is a net loss '-"e for large values, up to

,a 	 savings results.

The extension Of this concept to tell matrix multiplication is

(for C = A B)

P

	

^' 1	 1, 2u- I	 1, 2u

U = 1	 (4a)

I

	

j	 J	 b t u - I , j L'2u,j
u=1	 (4b)

t

2u I + b 2u, j )(a i, 2u + b2u

U=1

r; i - ri j 	if q =2p

2u- I + b 2u, I )(a i, 2u + b 2 i _ 1	 ^) -

u =1

^i	
- T) j +	 1 i71 1)	 if q =21, +- 1

for	 i= I , 2, ... , p	 and	 j=1 , 2, ... , s	 (4c)

11iis requires p s ['(I I + t (p + s) multiplies and ( i -1) (p +s) +

p s([ j g I+	 2+	 1)	 adds. For	 p= q= s= n	 and n	 large,

this reduces	 to	 — A n 3 + n 2	 multiplies and
3
2 n 3 + n 2	 ides,

which can effect a savings in computation time over the standard

procedure which requires 	 n 3 multiplies and n 3 - n 2 adds;

using the ratio of 2.7: 1 for multiplies to adds, in fact a savings

always occurs for n > 5 .
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A FOR'T'RAN subroutine WNOMUL which performs matrix

multiplication according to this algorithm is listed in the appendix.

s
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[11. Calculation of Gaussian Probability Density functions :

The n-dimensional probability de .ity for a normnl population

with mean rl and covariance K is given by

n	 -

f(x) = (2-) W. I K	 exh I(x-u) T K - I (x-u) J

In this section, we shall concern ourselves only with the calculation

of the quadratic form (the argument of exp), given u and 1, and

D where L and 1) are the modified Cholesky decomposition(3)

of K, i. e.	 K = L DL 3 , with L being unit lower triangular

and D, diagonal with positive diagonal entries. Then we can write

T
( x -11) T K - I (X-LO - ( x -11) I	 L - I	 1)- I	 I. - 1 (x - U

Y 1 D- I y

n

Y?	 di	 (5)

i=1

where

Y= L - 1 (X-U )	 ( 6)

Eq. (6) can be solved by forward substitution, i.e.

i-1

y i = (x i - u i ) -	 Iil y 	
(7)

j=1

where 1, = ( i i 1• ) . We then can use the Winograd procedure on the
2

summation term in eq. (7). (The staiJard method requires n - n
2

multiplies and (n- 2) 2( n - 1) adds to evaluate this term). We note

r
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that for evaluating this expression for more than one	 x , we can

use a variation of the algorithm for full matrix products.

Taking special note of the -,tructi : ,e of	 L,	 we then	 use

ri

i	 = L 'i, 2s- I	 t i, 2s
=1

i=:3, 4	 ...	 ,	 n	 (8)
r.

^i	 = J y 2s-I y 2 s
s=1

i-	 I
with	 r i
	

=	 2 J Ibis	 is equivalent to

r.
- 3	= y y 2 j_2,;3,... 2	 (9)

In 2j	 "2j- I

TI2j+ I	 ^2j- 1	 + -`'.'j- 1 	 v 2j	 j=2, a, ... , ( n -
-	 2

We there have. with

i-I

a i	 L	 ^ij yi
j=l

a 2	 A21 yl
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ri
 

2j -I + y2j) (t	 2j + y 2j-I ) -

j=1

R 	 - Ti	
if i odd

r	 r.

( t i ^ 2j-I	 + y2j) (ti, 2j + y2j-I)
j

F i	 ^i +	 t i, i- 1 y i- 1	 if	 i	 even

i=3 0 4, . .. , n	 (10)

Since ir depends only on I., it can be used in evaluating eq. (7)

for various x. "Fable 2 shows the number of operations necessary

for computing each of the various pars of the quadratic form. Note

that the Winograd algorithm is actually slower when Evaltiating this

expression for just one x, but for more than one x, the pre-

computed values of rr may be used. Table 3 shows the ratio of

times for the two methods for the case of "F in 
/T a = 2.7 for

computing ill of the quadratic terms for various values of n.

Note that a net savings occurs only in the lower right region.

Also shown in 'Fable 4 is the minimum ratio of T tn / T a for the

Winograd precedure to be faster for computing in quadratic terms.

Often in remote sensing calculations (e.g. maximum likelihood

classification), many probability density functions must be evaluated

over the same se ,., of data vectors. In this case, one may pre-

compute both the ^ 's and the I 's . Table 5 shows the asymp-

totic ( g precomputed and I computed only for the first class)

time savings to he exhccted for T  /7' a = 2.7 for k classes

for various values of n . Note that a net savings results for n > 4.
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IV, Conclusions

'I'll( , 1A'inograd matrix multiplication sche , ,w can produce a time

savings in various computations using large order matrices in the

digital processing of remotely sensed data. We have shown ho w a

modification of this procedure may be applied to the calculation of

Gaussian probability density functions, and indicated 1ww this may be

extended to other computations. For large dimensions, or a large

numher of points, there can he some time savings, but the user

{	 should determine the expected time difference wing the value of

T m /T a of the computer to be used. A further study should be

undertaken to investigate the effects of decreased nurnerical stability

of this algorithm in v,.rious applications.

F
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APPENDIX

SUNR7UTINc wNOMUL(A.P U•IA9R.SotB•C•IC• TMP I
C
C	 THIS 4OUT I NF USES TH I w INCG(?AD PPnC l7'DU Q1 T ]' MUL T I Q L Y Toll MA to I CF 5
C	 t.F. C=A+ .j wHFPF- A 1S P * O: y . O + S: E C• P * S•
C	 IA IS TH= LFNGTH n F THE COLS OF A AS DI M ENSICN Fn IN TH= MAIN PROG•
C	 IN ^ IC AP P SIMILAR QUANTITIFS FOR D to C
C	 C MUS T NI T CrCUPY THE SAME STn2AGF AS A 14 H

TMP IS WIPKING STORA(, c7 0= LFNGTH •GI7•S+P
t.

INTCGFG ) g Q.S•U• tJl.U2
PFAL A( IA•01.H( IBeSI * C.( IC.S)• T MP(I I
DOU31-^ P,a -CISMN SS.S1..2
L O GIC %L .IUD
I`TA=•P
L=Q/2

C
C	 COMPUTE THE X I f ^
C

00 10 1=1.P

IF (L.L T .2) 6 0 T l) 10
D r) 1'j U=2.L

U1=2*U
U'=U 1 —1

15	 SS=SS-A(I.U7)*A( I.UI )
10 TMP(I)=SS

C
C	 Cr'MPuTF TH c7 ETA I S
C

DO 20 J=1.S
:iS=-rn(1.J)+3(?.J)
IF (1_•L T.?) GO TD 20
10 2F- U=2 . L

U1=2+u
U2=U1-1

TMP( I F TA+J ) =SS
rDn=.FAL -, •
IF (2 + L.N P .0) IC)r)=•T(=UE.

r	 C
C	 C04PUTF THE C(I.J)•S
C

F Do 30 1 =1 . C
51=T'4 1-1 ( T )
S3=A( I.G)
n;l 30 J=I.

SS=Sl+TMP(I—;;TA+J)
IF(•IN rT * UDO1 G 	 TO .97

55=cS+S-4*H(0•J)
37	 Dr 3S U=1 .L

U1=2*u
U 2=11 l—1

35	 5	 5_;+(A(1.U2)+t,(U1.J))+(A(I.Ull+b(U?.J)!
10 C( I. J)=!^,S

FFTURN
FND

ORIGIN" PAGE V

OF POOR QUAUfyl
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