350 research outputs found

    Relationships between landscape morphology, climate and surface erosion in northern Peru at 5°S latitude

    Get PDF
    The northern segment of the Peruvian Andes is affected by a twofold climate with measurable implications on landscapes and landscape dynamics. During ‘normal' or ‘neutral' years easterly winds bring rain from the Atlantic and the Amazon Basin to the Sierras, which results in a seasonal climate with rather low-intensity precipitations. In contrast, during the large-scale warm phase of the ENSO cycle, El Niños transfer moisture from the Pacific to the Peruvian coast by westerly winds and result in high-intensity precipitation. We investigate the effects of this twofold climate for the case of the Piura drainage basin at ca. 5°S latitude (northern Peru). In the headwaters that have been under the influence of the easterlies, the landscape is mantled by a thick regolith cover and dissected by a network of debris flow channels that are mostly covered by a thick layer of unconsolidated sediment. This implies that in the headwaters of the Piura River sediment discharge has been limited by the transport capacity of the sediment transfer system. In the lower segment that has been affected by high-intensity rainfall in relation to the westerlies (El Niños), the hillslopes are dissected by debris flow channels that expose the bedrock on the channel floor, implying a supply-limited sediment discharge. Interestingly, measurements at the Piura gauging station near the coast reveal that, during the last decades, sediment was transferred to the lower reaches only in response to the 1982-1983 and 1997-1998 El Niño periods. For the latter period, synthetic aperture radar (SAR) intensity images show that the locations of substantial erosion are mainly located in areas that were affected by higher-than-average precipitation rates. Most important, these locations are coupled with the network of debris flow channels. This implies that the seasonal easterlies are responsible for the production of sediment through weathering in the headwaters, and the highly episodic El Niños result in export of sediment through channelized sediment transport down to the coastal segment. Both systems overlap showing a partially coupled sediment production-delivery syste

    Face to face - close range inspection of head vases

    Get PDF
    Several hundred attic head vases are known worldwide and stored in museums and collections. In 1929, Beazley has categorized twenty groups (A-W) based on stylistic properties and historic methodology. Head vases are assembled in several steps, most important for our comparison is the moulding of the head area. While the other parts of head vases like the size of the handle and the painting can differ significantly from each other, one can notice similarities in the head shapes of the same group. Since molds were used to shape the heads, our initial hypothesis was to perform a quantitative comparison of head shapes based on digital scan data. Comparison of scan data is straight forward and is very similar to quality control and inspection processes in industrial applications. Nonetheless, quality control of approximately 2,500-year-old artefacts that are distributed among several different places is not straight forward. Initial analysis was performed on older scan data. In addition, a high-resolution fringe projection scanner was employed to scan further head vases in additional museums in Germany and Italy. Scan resolution and accuracy of approximately 0.1 mm in all dimensions were required to reveal differences below 1 mm. All new scans were performed with an AICON SmartScan-HE C8. This scanner captures not only shape, but at the same time records color textures which can be employed for presentation or future analyses. Shape analysis results of the head areas do not only confirm that it is likely that the same mold was used for shaping some of the head vases. According to these results, it is also not unlikely that a first generation of larger head vases was used to prepare molds for consecutive generations of head vases that are slightly smaller by 10-15%. This volume loss resembles closely the volume loss observed after oven-burning of pottery. Scanning will continue to increase the data set for further analyses

    Dynamics, cation conformation and rotamers in guanidinium ionic liquids with ether groups

    Get PDF
    Ionic liquids are modern materials with a broad range of applications, including electrochemical devices, the exploitation of sustainable resources and chemical processing. Expanding the chemical space to include novel ion classes allows for the elucidation of novel structure-property relationships and fine tuning for specific applications. We prepared a set of ionic liquids based on the sparsely investigated pentamethyl guanidinium cation with a 2-ethoxy-ethyl side chain in combination with a series of frequently used anions. The resulting properties are compared to a cation with a pentyl side chain lacking ether functionalization. We measured the thermal transitions and transport properties to estimate the performance and trends of this cation class. The samples with imide-type anions form liquids at ambient temperature, and show good transport properties, comparable to imidazolium or ammonium ionic liquids. Despite the dynamics being significantly accelerated, ether functionalization of the cation favors the formation of crystalline solids. Single crystal structure analysis, ab initio calculations and variable temperature nuclear magnetic resonance measurements (VT-NMR) revealed that cation conformations for the ether- and alkyl-chain-substituted are different in both the solid and liquid states. While ether containing cations adopt compact, curled structures, those with pentyl side chains are linear. The Eyring plot revealed that the curled conformation is accompanied by a higher activation energy for rotation around the carbon-nitrogen bonds, due to the coordination of the ether chain as observed by VT-NMR

    MEM-BRAIN gas separation membranes for zero-emission fossil power plants

    Get PDF
    The aim of the MEM-BRAIN project is the development and integration of gas separation membranes for zero-emission fossil power plants. This will be achieved by selective membranes with high permeability for CO2, O2 or H2, so that high-purity CO2 is obtained in a readily condensable form. The project is being implemented by the “MEM-BRAIN” Helmholtz Alliance consisting of research centres, universities and industrial partners.\ud \ud The MEM-BRAIN project focuses on the development, process engineering, system integration and energy systems analysis of different gas separation membranes for the different CO2 capture process routes in fossil power plants

    Transport Theoretical Description of Collisional Energy Loss in Infinite Quark-Gluon Matter

    Full text link
    We study the time evolution of a high-momentum gluon or quark propagating through an infinite, thermalized, partonic medium utilizing a Boltzmann equation approach. We calculate the collisional energy loss of the parton, study its temperature and flavor dependence as well as the the momentum broadening incurred through multiple interactions. Our transport calculations agree well with analytic calculations of collisional energy-loss where available, but offer the unique opportunity to address the medium response as well in a consistent fashion.Comment: 12 pages, updated with additional references and typos correcte

    Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    Get PDF
    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components

    Jet Reconstruction in Heavy Ion Collisions

    Get PDF
    We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti-kt and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed transverse-momentum offset and dispersion.Comment: 31 pages, 17 figure

    High Energy Nuclear Collisions: Theory Overview

    Full text link
    We review some basic concepts of Relativistic Heavy Ion Physics and discuss our understanding of some key results from the experimental program at the Relativistic Heavy Ion Collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.Comment: 11 pages, 3 figures; delivered at ISNP 2009, published in Praman

    Emerging pharmacotherapy of tinnitus

    Get PDF
    Tinnitus, the perception of sound in the absence of an auditory stimulus, is perceived by about 1 in 10 adults, and for at least 1 in 100, tinnitus severely affects their quality of life. Because tinnitus is frequently associated with irritability, agitation, stress, insomnia, anxiety and depression, the social and economic burdens of tinnitus can be enormous. No curative treatments are available. However, tinnitus symptoms can be alleviated to some extent. The most widespread management therapies consist of auditory stimulation and cognitive behavioral treatment, aiming at improving habituation and coping strategies. Available clinical trials vary in methodological rigor and have been performed for a considerable number of different drugs. None of the investigated drugs have demonstrated providing replicable long-term reduction of tinnitus impact in the majority of patients in excess of placebo effects. Accordingly, there are no FDA or European Medicines Agency approved drugs for the treatment of tinnitus. However, in spite of the lack of evidence, a large variety of different compounds are prescribed off-label. Therefore, more effective pharmacotherapies for this huge and still growing market are desperately needed and even a drug that produces only a small but significant effect would have an enormous therapeutic impact. This review describes current and emerging pharmacotherapies with current difficulties and limitations. In addition, it provides an estimate of the tinnitus market. Finally, it describes recent advances in the tinnitus field which may help overcome obstacles faced in the pharmacological treatment of tinnitus. These include incomplete knowledge of tinnitus pathophysiology, lack of well-established animal models, heterogeneity of different forms of tinnitus, difficulties in tinnitus assessment and outcome measurement and variability in clinical trial methodology. © 2009 Informa UK Ltd.Fil: Langguth, Berthold. Universitat Regensburg; AlemaniaFil: Salvi, Richard. State University of New York; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    A Monte Carlo Model for 'Jet Quenching'

    Full text link
    We have developed the Monte Carlo simulation program JEWEL 1.0 (Jet Evolution With Energy Loss), which interfaces a perturbative final state parton shower with medium effects occurring in ultra-relativistic heavy ion collisions. This is done by comparing for each jet fragment the probability of further perturbative splitting with the density-dependent probability of scattering with the medium. A simple hadronisation mechanism is included. In the absence of medium effects, we validate JEWEL against a set of benchmark jet measurements. For elastic interactions with the medium, we characterise not only the medium-induced modification of the jet, but also the jet-induced modification of the medium. Our main physics result is the observation that collisional and radiative medium modifications lead to characteristic differences in the jet fragmentation pattern, which persist above a soft background cut. We argue that this should allow to disentangle collisional and radiative parton energy loss mechanisms by measuring the n-jet fraction or a class of jet shape observables.Comment: 16 pages, 10 figures, v2: version accepted by EPJ
    corecore