33 research outputs found

    Allelic Expression Changes in Medaka (Oryzias latipes) Hybrids between Inbred Strains Derived from Genetically Distant Populations

    Get PDF
    Variations in allele expressions between genetically distant populations are one of the most important factors which affects their morphological and physiological variations. These variations are caused by natural mutations accumulated in their habitats. It has been reported that allelic expression differences in the hybrids of genetically distant populations are different from parental strains. In that case, there is a possibility that allelic expression changes lead to novel phenotypes in hybrids. Based on genomic information of the genetically distant populations, quantification and comparison of allelic expression changes make importance of regulatory sequences (cis-acting factors) or upstream regulatory factors (trans-acting modulators) for these changes clearer. In this study, we focused on two Medaka inbred strains, Hd-rR and HNI, derived from genetically distant populations and their hybrids. They are highly polymorphic and we can utilize whole-genome information. To analyze allelic expression changes, we established a method to quantify and compare allele-specific expressions of 11 genes between the parental strains and their reciprocal hybrids. In intestines of reciprocal hybrids, allelic expression was either similar or different in comparison with the parental strains. Total expressions in Hd-rR and HNI were tissue-dependent in the case of HPRT1, with high up-regulation of Hd-rR allele expression in liver. The proportion of genes with differential allelic expression in Medaka hybrids seems to be the same as that in other animals, despite the high SNP rate in the genomes of the two inbred strains. It is suggested that each tissue of the strain difference in trans-acting modulators is more important than polymorphisms in cis-regulatory sequences in producing the allelic expression changes in reciprocal hybrids

    Genome-Wide Mapping of DNA Methylation in Chicken

    Get PDF
    Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS) and the transcription termination site (TTS). Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds

    Differences in Gene Expression between First and Third Trimester Human Placenta: A Microarray Study

    Get PDF
    BACKGROUND: The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. MATERIALS AND METHODS: Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9-12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. RESULTS: Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. CONCLUSIONS: Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons

    The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes

    Get PDF
    CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called “brother of regulator of imprinted sites” (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF

    Current status of the engineering design of the test modules for the IFMIF

    No full text
    Under Broader Approach (BA) Agreement between EURATOM and Japan, IFMIF/EVEDA (International Fusion Materials Irradiation Facility/Engineering Validation and Engineering Design Activities) has been performed since the middle of 2007. IFMIF presents three main facilities (the Accelerator Facility, Li Target Facility and Test Facilities). A previous design of IFMIF was summarized in the comprehensive design report [1]. The present EVEDA phase aims at producing a detailed, complete and fully integrated engineering design of IFMIF. The delivery of the "Intermediate IFMIF Engineering Design Report" is foreseen mid-2013. The goal of IFMIF is to obtain the indispensable design database to allow the design and licensing of DEMO and ensuring commercial reactors thanks to the materials data set obtained from planned evaluation tests such irradiations in high flux test modules (HFTM-vertical rig, HFTM-horizontal rig), medium flux test modules (creep fatigue test module, tritium release test module, liquid breeder validation module) and low flux test modules of IFMIF. In addition, the Startup Monitoring Module will be used for IFMIF commissioning. This paper is summarizing the overall current progress status of the engineering and conceptual design of the test modules in IFMIF/EVEDA. (C) 2013 Elsevier B.V. All rights reserved
    corecore