149 research outputs found

    Progress on Neutron-Target Multipoles above 1 GeV

    Full text link
    We report a new extraction of nucleon resonance couplings using pi- photoproduction cross sections on the neutron. The world database for the process gn-->pi-p above 1 GeV has quadrupled with the addition of new differential cross sections from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab in Hall B. Differential cross sections from CLAS have been improved with a new final-state interaction determination using a diagrammatic technique taking into account the SAID phenomenological NN and piN final-state interaction amplitudes. Resonance couplings have been extracted and compared to previous determinations. With the addition of these new cross sections, significant changes are seen in the high-energy behavior of the SAID cross sections and amplitudes.Comment: 4 pages, 3 figures, 1 table; talk given at 12th International Workshop on Meson Production, Properties and Interaction (MESON2012), 31 May - 5 June 2012, Krakow, Poland; will be published online in European Journal Web of Conference

    Comparison of various models of Monte Carlo geant 4 code in simulations of prompt gamma production

    Get PDF
    In this paper, results of simulations of the gamma-ray production in reactions with 70 MeV protons in a target of PMMA are presented. The data obtained by means of two versions of Geant 4 software, 9.3 and 10.01, have shown significant differences in the gamma-ray spectra. The comparison between the calculated spectra and the measured ones has been carried out. The tested versions do not give satisfactory agreement with the experimental result. The reason of the performed verification was the planned application of this simulation toolkit for the preparation of in vivo dosimetry based on the prompt gamma-ray measurements for the proton therapy

    Determination of Deuteron Beam Polarizations at COSY

    Get PDF
    The vector and tensor polarizations of a deuteron beam have been measured using elastic deuteron-carbon scattering at 75.6 MeV and deuteron-proton scattering at 270 MeV. After acceleration to 1170 MeV inside the COSY ring, the polarizations of the deuterons were checked by studying a variety of nuclear reactions using a cluster target at the ANKE magnet spectrometer placed at an internal target position of the storage ring. All these measurements were consistent with the absence of depolarization during acceleration and provide a number of secondary standards that can be used in subsequent experiments at the facility.Comment: 12 pages, 13 figure

    Spin tune mapping as a novel tool to probe the spin dynamics in storage rings

    Get PDF
    Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called \textit{spin tune mapping}, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 at the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8μ2.8\murad.Comment: 32 pages, 15 figures, 7 table

    Phase Measurement for Driven Spin Oscillations in a Storage Ring

    Get PDF
    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched 0.97GeV/c0.97\,\textrm{GeV/c} deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles

    Charge Symmetry Breaking in dd->4He{\pi}0 with WASA-at-COSY

    Get PDF
    Charge symmetry breaking (CSB) observables are a suitable experimental tool to examine effects induced by quark masses on the nuclear level. Previous high precision data from TRIUMF and IUCF are currently used to develop a consistent description of CSB within the framework of chiral perturbation theory. In this work the experimental studies on the reaction dd->4He{\pi}0 have been extended towards higher excess energies in order to provide information on the contribution of p-waves in the final state. For this, an exclusive measurement has been carried out at a beam momentum of p=1.2 GeV/c using the WASA-at-COSY facility. The total cross section amounts to sigma(tot) = (118 +- 18(stat) +- 13(sys) +- 8(ext)) pb and first data on the differential cross section are consistent with s-wave pion production.Comment: 14 pages, 5 figure

    ABC Effect and Resonance Structure in the Double-Pionic Fusion to 3^3He

    Full text link
    Exclusive and kinematically complete measurements of the double pionic fusion to 3^3He have been performed in the energy region of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the ππ\pi\pi-invariant mass spectrum. The experiments were carried out with the WASA detector setup at COSY. Similar to the observations in the basic pndπ0π0pn \to d \pi^0\pi^0 reaction and in the dd4dd \to ^4Heπ0π0\pi^0\pi^0 reaction, the data reveal a correlation between the ABC effect and a resonance-like energy dependence in the total cross section. Differential cross sections are well described by the hypothesis of dd^* resonance formation during the reaction process in addition to the conventional tt-channel ΔΔ\Delta\Delta mechanism. The deduced dd^* resonance width can be understood from collision broadening due to Fermi motion of the nucleons in initial and final nuclei

    Studies of Deuteron Breakup Reactions in Deuteron–Deuteron Collisions at 160 MeV with BINA

    Get PDF
    A rich set of differential cross section of the three-body 2H(d,dp)n breakup reaction at 160MeV deuteron beam energy has been measured over a large range of the available phase space. The experiment was performed at KVI in Groningen, the Netherlands, using the BINA detector. The cross-section data for the breakup reaction have been normalized to the simultaneously measured 2H(d,d)2H elastic scattering cross section. The breakup cross sections obtained for 147 kinematically complete configurations near the quasifree scattering kinematics are compared to the recent approximate calculations for the three-cluster breakup in deuteron–deuteron collisions. The cross sections for 294 kinematic configurations of the quasi-free scattering regime, for which no theoretical calculations exist, are also presented. Besides the three-body breakup, semiinclusive energy distributions for the four-body 2H(d,pp)nn breakup are reported

    Neutron-Proton Scattering in the Context of the dd^*(2380) Resonance

    Get PDF
    New data on quasifree polarized neutron-proton scattering, in the region of the recently observed dd^* resonance structure, have been obtained by exclusive and kinematically complete high-statistics measurements with WASA at COSY. This paper details the determination of the beam polarization, checks of the quasifree character of the scattering process, on all obtained AyA_y angular distributions and on the new partial-wave analysis, which includes the new data producing a resonance pole in the 3D3^3D_3-3G3^3G_3 coupled partial waves at (2380±10i40±52380\pm10 - i40\pm5) MeV -- in accordance with the dd^* dibaryon resonance hypothesis. The effect of the new partial-wave solution on the description of total and differential cross section data as well as specific combinations of spin-correlation and spin-transfer observables available from COSY-ANKE measurements at TdT_d = 2.27 GeV is discussed

    Measurement of the pnppπ0πpn \to pp\pi^0\pi^- Reaction in Search for the Recently Observed Resonance Structure in dπ0π0d\pi^0\pi^0 and dπ+πd\pi^+\pi^- systems

    Get PDF
    Exclusive measurements of the quasi-free pnppπ0πpn \to pp\pi^0\pi^- reaction have been performed by means of pdpd collisions at TpT_p = 1.2 GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region s\sqrt s = (2.35 - 2.46) GeV, which includes the region of the ABC effect and its associated resonance structure. No ABC effect, {\it i.e.} low-mass enhancement is found in the π0π\pi^0\pi^--invariant mass spectrum -- in agreement with the constraint from Bose statistics that the isovector pion pair can not be in relative s-wave. At the upper end of the covered energy region tt-channel processes for Roper, Δ(1600)\Delta(1600) and ΔΔ\Delta\Delta excitations provide a reasonable description of the data, but at low energies the measured cross sections are much larger than predicted by such processes. Adding a resonance amplitude for the resonance at mm=~2.37 GeV with Γ\Gamma =~70 MeV and I(JP)= 0(3+)I(J^P)=~0(3^+) observed recently in pndπ0π0pn \to d\pi^0\pi^0 and pndπ+πpn \to d\pi^+\pi^- reactions leads to an agreement with the data also at low energies
    corecore