590 research outputs found
Comparison of dynamic isotope power systems for distributed planet surface applications
Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed
Design of multihundredwatt DIPS for robotic space missions
Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established
Design of small Stirling dynamic isotope power system for robotic space missions
Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory
SEI power source alternatives for rovers and other multi-kWe distributed surface applications
To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined
Hyperextended Scalar-Tensor Gravity
We study a general Scalar-Tensor Theory with an arbitrary coupling funtion
but also an arbitrary dependence of the ``gravitational
constant'' in the cases in which either one of them, or both, do not
admit an analytical inverse, as in the hyperextended inflationary scenario. We
present the full set of field equations and study their cosmological behavior.
We show that different scalar-tensor theories can be grouped in classes with
the same solution for the scalar field.Comment: latex file, To appear in Physical Review
Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices
Objective The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. Study Design Feasibility study. Setting Tertiary referral center. Subjects and Methods Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). Results A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. Conclusion M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response
At Home Progressive Resistance Training for Adults with Down Syndrome - Study Materials Development
Down syndrome (DS) presents secondary characteristics including hypotonia, obesity and poor physical fitness that increase barriers to participation in physical activity. PURPOSE: This project developed tailored exercise videos for adults with DS with the aim of reducing the barrier of access to physical activity. METHODS: In a 2020 pilot study, adults with DS (n=5) consented to a 4-week at home intervention following three separate pre-recorded exercise videos (a warm-up video, an exercise routine video to be replayed 2-3 times, and a cool-down video) hosted online, (n=2) dropped before baseline testing. Videos contained a progressive resistance training (PRT) routine demonstrated by a person with neurotypical development. RESULTS: Participants (n=3) showed variable upper body (modified push-ups: 7-22 reps) and lower body (30 seconds sit-to-stand: 8-11 reps) muscular strength at baseline. Three participants completed the intervention with 100% indicating the need for continuous flowing videos. Based on these results a 10-week PRT program for adults with DS was developed, with volume increasing every 2 weeks following linear periodization. The program contained 30 instructional videos (15 beginner & 15 intermediate). Each 2-week interval included three videos for each week. Videos were 1-hour-to-1.3 hours long and consisted of a warm-up (~10 min), a main exercise routine (~40-50 min), and a cool-down (~10 min). The warm-up included a brief aerobic component and full body muscle priming. Exercise routines depicted 2-3 sets of 7-8 exercises with 6-14 repetitions targeting all major muscle groups using body weight and a backpack for load. The cool down had static stretching. Demonstrations, scripted verbal and breathing cues were provided for all exercises. Regressions were provided for difficult exercises. Exercises went from large to small muscle groups and spaced by one minute of rest time. Males and females, neurotypical and with DS were demonstrators in each video. CONCLUSION: Pilot study results informed future study PRT workload, the need for beginner and intermediate levels, and continuous flowing videos. Access to tailored exercises for adults with DS can be potentially increased by an on-line PRT program. Future studies should evaluate the feasibility and efficacy of this intervention strategy
Modelling the Health Impact of an English Sugary Drinks Duty at National and Local Levels
Increasing evidence associates excess refined sugar intakes with obesity, Type 2 diabetes and heart disease. Worryingly, the estimated volume of sugary drinks purchased in the UK has more than doubled between 1975 and 2007, from 510ml to 1140ml per person per week. We aimed to estimate the potential impact of a duty on sugar sweetened beverages (SSBs) at a local level in England, hypothesising that a duty could reduce obesity and
related diseases.
Methods and Findings
We modelled the potential impact of a 20% sugary drinks duty on local authorities in England between 2010 and 2030. We synthesised data obtained from the British National Diet and Nutrition Survey (NDNS), drinks manufacturers, Office for National Statistics, and
from previous studies. This produced a modelled population of 41 million adults in 326 lower tier local authorities in England. This analysis suggests that a 20% SSB duty could result in approximately 2,400 fewer diabetes cases, 1,700 fewer stroke and coronary heart
disease cases, 400 fewer cancer cases, and gain some 41,000 Quality Adjusted Life Years (QALYs) per year across England. The duty might have the biggest impact in urban areas with young populations.
Conclusions
This study adds to the growing body of evidence suggesting health benefits for a duty on sugary drinks. It might also usefully provide results at an area level to inform local price interventions in England
Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is poor, with five year osteosarcoma survival rates in people not having improved in decades. For dogs, one year survival rates are only around ~45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human osteosarcoma. Finally, the current position of canine osteosarcoma genetic research is discussed and areas for additional work within the canine population are identified
- …
