4,299 research outputs found
A reference atmosphere for patrick afb, florida, annual /1963 revision/
Reference atmosphere for cape kennedy based on statistical parameters of pressure-height, temperature, and relative humidity at constant pressure level
Simplified landscapes for optimization of shaken lattice interferometry
Motivated by recent results using shaken optical lattices to perform atom
interferometry, we explore splitting of an atom cloud trapped in a
phase-modulated ("shaken") optical lattice. Using a simple analytic model we
are able to show that we can obtain the simplest case of splitting via single-frequency shaking. This is confirmed both
via simulation and experiment. Furthermore, we are able to split with a
relative phase between the two split arms of or depending on
our shaking frequency. Addressing higher-order splitting, we determine that
splitting is sufficient to be able to accelerate the
atoms in counter-propagating lattices. Finally, we show that we can use a
genetic algorithm to optimize and splitting to within by restricting our
optimization to the resonance frequencies corresponding to single- and
two-photon transitions between Bloch bands
A collection of lower thermospheric /100 to 300 km altitude/ chemical composition, temperature, and mass density data
Tabulated lower thermospheric chemical composition, temperature, and mass density dat
The [alpha/Fe] Ratios in Dwarf Galaxies: Evidence for a Non-universal Stellar Initial Mass Function?
It is well established that the [alpha/Fe] ratios in elliptical galaxies
increase with galaxy mass. This relation holds also for early-type dwarf
galaxies, although it seems to steepen at low masses. The [alpha/Fe] vs. mass
relation can be explained assuming that smaller galaxies form over longer
timescales (downsizing), allowing a larger amount of Fe (mostly produced by
long-living Type Ia Supernovae) to be released and incorporated into newly
forming stars. Another way to obtain the same result is by using a flatter
initial mass function (IMF) in large galaxies, increasing in this way the
number of Type II Supernovae and therefore the production rate of
alpha-elements. The integrated galactic initial mass function (IGIMF) theory
predicts that the higher the star formation rate, the flatter the IMF. We have
checked, by means of semi-analytical calculations, that the IGIMF theory,
combined with the downsizing effect (i.e. the shorter duration of the star
formation in larger galaxies), well reproduces the observed [alpha/Fe] vs. mass
relation. In particular, we show a steepening of this relation in dwarf
galaxies, in accordance with the available observations.Comment: 4 pages, 2 figures; to appear in the proceedings of the JENAM 2010
Symposium on Dwarf Galaxies (Lisbon, September 9-10, 2010
Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF
We make use of a semi-analytical model of galaxy formation to investigate the
origin of the observed correlation between [a/Fe] abundance ratios and stellar
mass in elliptical galaxies. We implement a new galaxy-wide stellar initial
mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in
the semi-analytic model SAG and evaluate its impact on the chemical evolution
of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key
to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach
higher [a/Fe] abundance ratios because they are characterized by more top-heavy
IMFs as a result of their higher SFR. As a consequence of our analysis, the
value of the minimum embedded star cluster mass and of the slope of the
embedded cluster mass function, which are free parameters involved in the
TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively.
A mild downsizing trend is present for galaxies generated assuming either a
universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass,
older galaxies (with formation redshifts > 2) are formed in shorter time-scales
(< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy
formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation,
but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed
stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical
galaxies by looking into mass-to-light ratios, and luminosity functions. Models
with a TH-IGIMF are also favoured by these constraints. In particular,
mass-to-light ratios agree with observed values for massive galaxies while
being overpredicted for less massive ones; this overprediction is present
regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to
MNRA
Flow establishment in a generic scramjet combustor
The establishment of a quasi-steady flow in a generic scramjet combustor was studied for the case of a time varying inflow to the combustor. Such transient flow is characteristic of the reflected shock tunnel and expansion tube test facilities. Several numerical simulations of hypervelocity flow through a straight duct combustor with either a side wall step fuel injector or a centrally located strut injector are presented. Comparisons were made between impulsively started but otherwise constant flow conditions (typical of the expansion tube or tailored operations of the reflected shock tunnel) and the relaxing flow produced by the 'undertailored' operations of the reflected shock tunnel. Generally the inviscid flow features, such as the shock pattern and pressure distribution, were unaffected by the time varying inlet conditions and approached steady state in approx. the times indicated by experimental correlations. However, viscous features, such as heat transfer and skin friction, were altered by the relaxing inlet flow conditions
The Variation of Integrated Star IMFs among Galaxies
The integrated galaxial initial mass function (IGIMF) is the relevant
distribution function containing the information on the distribution of stellar
remnants, the number of supernovae and the chemical enrichment history of a
galaxy. Since most stars form in embedded star clusters with different masses
the IGIMF becomes an integral of the assumed (universal or invariant) stellar
IMF over the embedded star-cluster mass function (ECMF). For a range of
reasonable assumptions about the IMF and the ECMF we find the IGIMF to be
steeper (containing fewer massive stars per star) than the stellar IMF, but
below a few Msol it is invariant and identical to the stellar IMF for all
galaxies. However, the steepening sensitively depends on the form of the ECMF
in the low-mass regime. Furthermore, observations indicate a relation between
the star formation rate of a galaxy and the most massive young stellar cluster
in it. The assumption that this cluster mass marks the upper end of a
young-cluster mass function leads to a connection of the star formation rate
and the slope of the IGIMF above a few Msol. The IGIMF varies with the star
formation history of a galaxy. Notably, large variations of the IGIMF are
evident for dE, dIrr and LSB galaxies with a small to modest stellar mass. We
find that for any galaxy the number of supernovae per star (NSNS) is suppressed
relative to that expected for a Salpeter IMF. Dwarf galaxies have a smaller
NSNS compared to massive galaxies. For dwarf galaxies the NSNS varies
substantially depending on the galaxy assembly history and the assumptions made
about the low-mass end of the ECMF. The findings presented here may be of some
consequence for the cosmological evolution of the number of supernovae per
low-mass star and the chemical enrichment of galaxies of different mass.Comment: 27 pages, accepted for publication by Ap
The Sparsest Clusters With O Stars
There is much debate on how high-mass star formation varies with environment,
and whether the sparsest star-forming environments are capable of forming
massive stars. To address this issue, we have observed eight apparently
isolated OB stars in the SMC using HST's Advanced Camera for Surveys. Five of
these objects appear as isolated stars, two of which are confirmed to be
runaways. The remaining three objects are found to exist in sparse clusters,
with <10 companion stars revealed, having masses of 1-4 solar mass. Stochastic
effects dominate in these sparse clusters, so we perform Monte Carlo
simulations to explore how our observations fit within the framework of
empirical, galactic cluster properties. We generate clusters using a simplistic
-2 power-law distribution for either the number of stars per cluster (N_*) or
cluster mass (M_cl). These clusters are then populated with stars randomly
chosen from a Kroupa IMF. We find that simulations with cluster lower-mass
limits of M_cl,lo >20 solar mass and N_*,lo >40 match best with observations of
SMC and Galactic OB star populations. We examine the mass ratio of the
second-most massive and most massive stars (m_max,2/m_max), finding that our
observations all exist below the 20th percentile of our simulated clusters.
However, all of our observed clusters lie within the parameter space spanned by
the simulated clusters, although some are in the lowest 5th percentile
frequency. These results suggest that clusters are built stochastically by
randomly sampling stars from a universal IMF with a fixed stellar upper-mass
limit. In particular, we see no evidence to suggest a m_max - M_cl relation.
Our results may be more consistent with core accretion models of star formation
than with competitive accretion models, and they are inconsistent with the
proposed steepening of the integrated galaxy IMF (IGIMF).Comment: 19 pages, 12 figures, accepted for publication in Ap
On the Similarity between Cluster and Galactic Stellar Initial Mass Functions
The stellar initial mass functions (IMFs) for the Galactic bulge, the Milky
Way, other galaxies, clusters of galaxies, and the integrated stars in the
Universe are composites from countless individual IMFs in star clusters and
associations where stars form. These galaxy-scale IMFs, reviewed in detail
here, are not steeper than the cluster IMFs except in rare cases. This is true
even though low mass clusters generally outnumber high mass clusters and the
average maximum stellar mass in a cluster scales with the cluster mass. The
implication is that the mass distribution function for clusters and
associations is a power law with a slope of -2 or shallower. Steeper slopes,
even by a few tenths, upset the observed equality between large and small scale
IMFs. Such a cluster function is expected from the hierarchical nature of star
formation, which also provides independent evidence for the IMF equality when
it is applied on sub-cluster scales. We explain these results with analytical
expressions and Monte Carlo simulations. Star clusters appear to be the relaxed
inner parts of a widespread hierarchy of star formation and cloud structure.
They are defined by their own dynamics rather than pre-existing cloud
boundaries.Comment: 22 pages, 2 figures, ApJ, 648, in press, September 1, 200
- …
