7 research outputs found

    Modelling of the Total Electronic Content and magnetic field anomalies generated by the 2011 Tohoku-oki tsunami and associated acoustic-gravity waves,

    Get PDF
    International audienceIn this work, numerical simulations of the atmospheric and ionospheric anomalies are performed for the Tohoku-Oki tsunami (2011 March 11). The Tsunami-Atmosphere-Ionosphere (TAI) coupling mechanism via acoustic gravity waves (AGWs) is explored theoretically using the TAI-coupled model. For the modelled tsunami wave as an input, the coupled model simulates the wind, density and temperature disturbances or anomalies in the atmosphere and electron density/magnetic anomalies in the F region of the ionosphere. Also presented are the GPS-total electron content (TEC) and ground-based magnetometer measurements during the first hour of tsunami and good agreements are found between modelled and observed anomalies. At first, within 6 min from the tsunami origin, the simulated wind anomaly at 250 km altitude and TEC anomaly appear as the dipole-shaped disturbances around the epicentre, then as the concentric circular wave fronts radially moving away from the epicentre with the horizontal velocity ∼800 m s−1 after 12 min followed by the slow moving (horizontal velocity ∼250 m s−1) wave disturbance after 30 min. The detailed vertical-horizontal propagation characteristics suggest that the anomalies appear before and after 30 min are associated with the acoustic and gravity waves, respectively. Similar propagation characteristics are found from the GPS-TEC and magnetic measurements presented here and also reported from recent studies. The modelled magnetic anomaly in the F region ionosphere is found to have similar temporal variations with respect to the epicentre distance as that of the magnetic anomaly registered from the ground-based magnetometers. The high-frequency component ∼10 min of the simulated wind, TEC and magnetic anomalies in the F region develops within 6-7 min after the initiation of the tsunami, suggesting the importance of monitoring the high-frequency atmospheric/ionospheric anomalies for the early warning. These anomalies are found to maximize across the epicentre in the direction opposite to the tsunami propagation suggesting that the large atmospheric/ionospheric disturbances are excited in the region where tsunami does not travel

    Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone

    Get PDF
    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load

    Data-adaptive detection of transient deformation in geodetic networks

    No full text
    The recent development of dense and continuously operating Global Navigation Satellite System (GNSS) networks worldwide has led to a significant increase in geodetic data sets that sometimes capture transient-deformation signals. It is challenging, however, to extract such transients of geophysical origin from the background noise inherent to GNSS time series and, even more so, to separate them from other signals, such as seasonal redistributions of geophysical fluid mass loads. In addition, because of the very large number of continuously recording GNSS stations now available, it has become impossible to systematically inspect each time series and visually compare them at all neighboring sites. Here we show that Multichannel Singular Spectrum Analysis (M-SSA), a method derived from the analysis of dynamical systems, can be used to extract transient deformations, seasonal oscillations, and background noise present in GNSS time series. M-SSA is a multivariate, nonparametric, statistical method that simultaneously exploits the spatial and temporal correlations of geophysical fields. The method allows for the extraction of common modes of variability, such as trends with nonconstant slopes and oscillations shared across time series, without a priori hypotheses about their spatiotemporal structure or their noise characteristics. We illustrate this method using synthetic examples and show applications to actual GPS data from Alaska to detect seasonal signals and microdeformation at the Akutan active volcano. The geophysically coherent spatiotemporal patterns of uplift and subsidence thus detected are compared to the results of an idealized model of such processes in the presence of a magma chamber source

    Magma ascent and emplacement below floor fractured craters on the Moon from floor uplift and fracture length

    No full text
    International audienceFloor fractured craters (FFCs) are a class of craters on the Moon that presents deformed, uplifted and fractured floors. These endogenous modifications were likely caused by the emplacement of underlying magmatic intrusions. Here we provide two independent quantitative observations that reflect how the overpressure leading to a crater-centered intrusion varies as a function of crater radius and crustal thickness: the amount of crater floor uplift and the total length of fractures covering the crater floor. Those two observations can be related to the magma overpressure inside the shallow intrusion provided that a significant part of the elastic energy of deformation associated to magma emplacement below the crater is dissipated by the formation of fractures; a condition that seems to be met for a significant number of craters in the Highlands or at the limit between the Highlands and the lunar maria. Here we show that for those FFCs, variations of these two quantities with crater radius and crustal thickness are well predicted by a process of magma ascent caused by crater unloading. By further developing this model and precising its initial conditions, we show that magma storage in the lunar crust is likely to be in the form of vertical dykes emanating from the crust mantle interface. Finally, this study highlights the use of the total fracture length and fracture patterns on FFCs floors as observations that provide insights into the mechanism of magma ascent and emplacement below FFCs and the characteristics of the encasing medium

    Modeling the Intermittent Lava Lake Drops Occurring Between 2015 and 2021 at Nyiragongo Volcano

    No full text
    Abstract Between 2015 and 2021, Nyiragongo's lava lake level experienced a linear increase punctuated by fast intermittent drops. These drops occurred synchronously to seismic swarm at approximately 15 km below the surface and extending laterally NE from the volcano. To interpret these lava lake level patterns in terms of reservoirs pressure evolution within Nyiragongo, we consider the following simplified plumbing system: a central reservoir is fed by a constant flux of magma, distributing the fluid up into the lava lake and laterally into a distal storage zone. Magma transport is driven by a pressure gradient between the magma storage bodies, accommodating influx and outflow of magma elastically, and the lava lake. Lateral transport at depth occurs through a hydraulic connection for which the flow resistance is coupled to the magma flux. When the right conditions are met, lateral magma transport occurs intermittently and triggers intermittent lava lake level drops matching the observations
    corecore