138 research outputs found
Plagiarism in five universities in Mozambique: Magnitude, detection techniques, and control measures
Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD
AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus
far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also
encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle
transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like
domain of SidD. Here, we determined the crystal structure of full length SidD including the
uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within
the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus
within mammalian cells. Deletion of the loop (??loop) or substitution of its aromatic phenylalanine
residues rendered SidD cytosolic, showing that the hydrophobic loop is the
primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal
alpha helices resulted in a CTD variant incapable of discriminating between membranes of
different composition. Moreover, a L. pneumophila strain producing SidD??loop phenocopied
a L. pneumophila ??sidD strain during growth in mouse macrophages and displayed prolonged
co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting
of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation
during L. pneumophila infection
Jets and energy flow in photon-proton collisions at HERA
Properties of the hadronic final state in photoproduction events with large transverse energy are studied at the electron-proton collider HERA. Distributions of the transverse energy, jets and underlying event energy are compared to \overline{p}p data and QCD calculations. The comparisons show that the \gamma p events can be consistently described by QCD models including -- in addition to the primary hard scattering process -- interactions between the two beam remnants. The differential jet cross sections d\sigma/dE_T^{jet} and d\sigma/d\eta^{jet} are measured
Разработка интерактивной моделирующей системы технологии низкотемпературной сепарации газа
We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2
Performance of the D-Egg Optical Sensor for the IceCube Upgrade
New optical sensors called the "D-Egg" have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high QE photomultipliers, they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module (DOM) design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitized using ultra-low-power 14-bit ADCs with a sampling frequency of 250-MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200pe within 10ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in DAQ system
A Measurement of the Proton Structure Function
A measurement of the proton structure function is reported
for momentum transfer squared between 4.5 and 1600 and
for Bjorken between and 0.13 using data collected by the
HERA experiment H1 in 1993. It is observed that increases
significantly with decreasing , confirming our previous measurement made
with one tenth of the data available in this analysis. The dependence is
approximately logarithmic over the full kinematic range covered. The subsample
of deep inelastic events with a large pseudo-rapidity gap in the hadronic
energy flow close to the proton remnant is used to measure the "diffractive"
contribution to .Comment: 32 pages, ps, appended as compressed, uuencoded fil
Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments
Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties
- …