982 research outputs found
Fluctuation relation for a L\'evy particle
We study the work fluctuations of a particle subjected to a deterministic
drag force plus a random forcing whose statistics is of the L\'evy type. In the
stationary regime, the probability density of the work is found to have ``fat''
power-law tails which assign a relatively high probability to large
fluctuations compared with the case where the random forcing is Gaussian. These
tails lead to a strong violation of existing fluctuation theorems, as the ratio
of the probabilities of positive and negative work fluctuations of equal
magnitude behaves in a non-monotonic way. Possible experiments that could probe
these features are proposed.Comment: 5 pages, 2 figures, RevTeX4; v2: minor corrections and references
added; v3: typos corrected, new conclusion, close to published versio
Exact solution of a model DNA-inversion genetic switch with orientational control
DNA inversion is an important mechanism by which bacteria and bacteriophage
switch reversibly between phenotypic states. In such switches, the orientation
of a short DNA element is flipped by a site-specific recombinase enzyme. We
propose a simple model for a DNA inversion switch in which recombinase
production is dependent on the switch state (orientational control). Our model
is inspired by the fim switch in Escherichia coli. We present an exact
analytical solution of the chemical master equation for the model switch, as
well as stochastic simulations. Orientational control causes the switch to
deviate from Poissonian behaviour: the distribution of times in the on state
shows a peak and successive flip times are correlated.Comment: Revised version, accepted for publicatio
Activity driven fluctuations in living cells
We propose a model for the dynamics of a probe embedded in a living cell,
where both thermal fluctuations and nonequilibrium activity coexist. The model
is based on a confining harmonic potential describing the elastic cytoskeletal
matrix, which undergoes random active hops as a result of the nonequilibrium
rearrangements within the cell. We describe the probe's statistics and we bring
forth quantities affected by the nonequilibrium activity. We find an excellent
agreement between the predictions of our model and experimental results for
tracers inside living cells. Finally, we exploit our model to arrive at
quantitative predictions for the parameters characterizing nonequilibrium
activity, such as the typical time scale of the activity and the amplitude of
the active fluctuations.Comment: 6 pages, 4 figure
Probing active forces via a fluctuation-dissipation relation: Application to living cells
We derive a new fluctuation-dissipation relation for non-equilibrium systems
with long-term memory. We show how this relation allows one to access new
experimental information regarding active forces in living cells that cannot
otherwise be accessed. For a silica bead attached to the wall of a living cell,
we identify a crossover time between thermally controlled fluctuations and
those produced by the active forces. We show that the probe position is
eventually slaved to the underlying random drive produced by the so-called
active forces.Comment: 5 page
Spatial fluctuations at vertices of epithelial layers: quantification of regulation by Rho pathway
In living matter, shape fluctuations induced by acto-myosin are usually
studied in vitro via reconstituted gels, whose properties are controlled by
changing the concentrations of actin, myosin and cross-linkers. Such an
approach deliberately avoids to consider the complexity of biochemical
signaling inherent to living systems. Acto-myosin activity inside living cells
is mainly regulated by the Rho signaling pathway which is composed of multiple
layers of coupled activators and inhibitors. We investigate how such a pathway
controls the dynamics of confluent epithelial tissues by tracking the
displacements of the junction points between cells. Using a phenomenological
model to analyze the vertex fluctuations, we rationalize the effects of
different Rho signaling targets on the emergent tissue activity by quantifying
the effective diffusion coefficient, the persistence time and persistence
length of the fluctuations. Our results reveal an unanticipated correlation
between layers of activation/inhibition and spatial fluctuations within
tissues. Overall, this work connects the regulation via biochemical signaling
with mesoscopic spatial fluctuations, with potential application to the study
of structural rearrangements in epithelial tissues.Comment: 8 pages, 3 figure
Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited
We revisit the model of a Brownian particle in a heat bath submitted to an
actively controlled force proportional to the velocity that leads to thermal
noise reduction (cold damping). We investigate the influence of the continuous
feedback on the fluctuations of the total entropy production and show that the
explicit expression of the detailed fluctuation theorem involves different
dynamics and observables in the forward and backward processes. As an
illustration, we study the analytically solvable case of a harmonic oscillator
and calculate the characteristic function of the entropy production in a
nonequilibrium steady state. We then determine the corresponding large
deviation function which results from an unusual interplay between 'boundary'
and 'bulk' contributions.Comment: 16 pages, 5 figures. References 9,10,13,14,15 added. A few changes in
the text. Accepted for publication in J. Stat. Mec
Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS
We performed a search for short gravitational wave bursts using about 3 years
of data of the resonant bar detectors Nautilus and Explorer. Two types of
analysis were performed: a search for coincidences with a low background of
accidentals (0.1 over the entire period), and the calculation of upper limits
on the rate of gravitational wave bursts. Here we give a detailed account of
the methodology and we report the results: a null search for coincident events
and an upper limit that improves over all previous limits from resonant
antennas, and is competitive, in the range h_rss ~1E-19, with limits from
interferometric detectors. Some new methodological features are introduced that
have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
Granular Brownian motion
We study the stochastic motion of an intruder in a dilute driven granular
gas. All particles are coupled to a thermostat, representing the external
energy source, which is the sum of random forces and a viscous drag. The
dynamics of the intruder, in the large mass limit, is well described by a
linear Langevin equation, combining the effects of the external bath and of the
"granular bath". The drag and diffusion coefficients are calculated under few
assumptions, whose validity is well verified in numerical simulations. We also
discuss the non-equilibrium properties of the intruder dynamics, as well as the
corrections due to finite packing fraction or finite intruder mass.Comment: 19 pages, 4 figures, in press on Journal of Statistical Mechanics:
Theory and Experiment
Facial Emotion Recognition and Expression in Parkinson's Disease: An Emotional Mirror Mechanism?
BACKGROUND AND AIM: Parkinson's disease (PD) patients have impairment of facial expressivity (hypomimia) and difficulties in interpreting the emotional facial expressions produced by others, especially for aversive emotions. We aimed to evaluate the ability to produce facial emotional expressions and to recognize facial emotional expressions produced by others in a group of PD patients and a group of healthy participants in order to explore the relationship between these two abilities and any differences between the two groups of participants. METHODS: Twenty non-demented, non-depressed PD patients and twenty healthy participants (HC) matched for demographic characteristics were studied. The ability of recognizing emotional facial expressions was assessed with the Ekman 60-faces test (Emotion recognition task). Participants were video-recorded while posing facial expressions of 6 primary emotions (happiness, sadness, surprise, disgust, fear and anger). The most expressive pictures for each emotion were derived from the videos. Ten healthy raters were asked to look at the pictures displayed on a computer-screen in pseudo-random fashion and to identify the emotional label in a six-forced-choice response format (Emotion expressivity task). Reaction time (RT) and accuracy of responses were recorded. At the end of each trial the participant was asked to rate his/her confidence in his/her perceived accuracy of response. RESULTS: For emotion recognition, PD reported lower score than HC for Ekman total score (p<0.001), and for single emotions sub-scores happiness, fear, anger, sadness (p<0.01) and surprise (p = 0.02). In the facial emotion expressivity task, PD and HC significantly differed in the total score (p = 0.05) and in the sub-scores for happiness, sadness, anger (all p<0.001). RT and the level of confidence showed significant differences between PD and HC for the same emotions. There was a significant positive correlation between the emotion facial recognition and expressivity in both groups; the correlation was even stronger when ranking emotions from the best recognized to the worst (R = 0.75, p = 0.004). CONCLUSIONS: PD patients showed difficulties in recognizing emotional facial expressions produced by others and in posing facial emotional expressions compared to healthy subjects. The linear correlation between recognition and expression in both experimental groups suggests that the two mechanisms share a common system, which could be deteriorated in patients with PD. These results open new clinical and rehabilitation perspectives
Effect of cosmic rays on the resonant gravitational wave detector NAUTILUS at temperature T=1.5 K
The interaction between cosmic rays and the gravitational wave bar detector
NAUTILUS is experimentally studied with the aluminum bar at temperature of
T=1.5 K. The results are compared with those obtained in the previous runs when
the bar was at T=0.14 K. The results of the run at T = 1.5 K are in agreement
with the thermo-acoustic model; no large signals at unexpected rate are
noticed, unlike the data taken in the run at T = 0.14 K. The observations
suggest a larger efficiency in the mechanism of conversion of the particle
energy into vibrational mode energy when the aluminum bar is in the
superconductive status.Comment: 7 pages, 3 figures, 2 tables. Accepted by Physics Letters
- …
