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Abstract. We study the stochastic motion of an intruder in a dilute driven granular

gas. All particles are coupled to a thermostat, representing the external energy source,

which is the sum of random forces and a viscous drag. The dynamics of the intruder,

in the large mass limit, is well described by a linear Langevin equation, combining

the effects of the external bath and of the “granular bath”. The drag and diffusion

coefficients are calculated under few assumptions, whose validity is well verified in

numerical simulations. We also discuss the non-equilibrium properties of the intruder

dynamics, as well as the corrections due to finite packing fraction or finite intruder

mass.
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1. Introduction

Granular materials in the fluidized state [1, 2] have represented, during the last 10-15

years, an excellent benchmark for new and old theories in non-equilibrium statistical

mechanics: the presence of non-conservative forces make unavailable the standard

tools used at equilibrium, such as Gibbs measure, equipartition, thermodynamic limit,

Einstein relation and more [3, 4, 5, 6]. It is therefore necessary to resort to more

fundamental theories, from the Boltzmann equation up to stochastic processes and

modern generalizations of statistical mechanics to non-equilibrium states [7, 8].

In order to achieve a stationary state, the fundamental ingredient is an external

source of energy, required to compensate the energy lost in inelastic collisions. The

role of energy source is played by some injection mechanisms, depending upon the

experimental setup, e.g.: a box with a vibrating wall, a layer (or more than one) placed

over a vibrating plate, a gas flux going through orifices in the box walls, etc. The

different mechanisms may produce quite different states with different symmetries: for

instance a layer over a vibrating plate is homogeneous on average, while a boundary

driving (e.g. a shaken box wall) leads to spatial gradients and currents [9, 10, 11].

From the point of view of a tracer particle, however, the dynamics is always

of a similar kind: the tracer interacts, in a random sequence, with the surrounding

particles and with the energy source. The ratio between frequencies of interaction

dictates the relevance of tracer-particle collisions with respect to exchanges between

the tracer and the source. Of course, in a boundary-driven setup, the statistics of

collisions suffered by the tracer depends upon the distance from the energy source.

Anyway, the random motion performed by the granular tracer should always take into

account the two contributions: collisions with other granular particles and interaction

with the energy source. In more idealized setups, the so-called Homogeneous or non-

Homogeneous Cooling States, no energy injection is involved: in this regimes, anyway,

a collisional stationary state cannot be achieved and experimental verification is very

difficult to be achieved.

Here we consider a model commonly used in the theoretical literature on granular

fluids: all grains are coupled to a thermostat-like energy source, with a typical interaction

time τb which is usually taken larger than the inter-particles collision time τc [12, 13]. The

stationary granular gas obtained in this way, is then used as a “granular bath” where

a massive intruder performs a non-equilibrium Brownian motion, still being coupled

to external energy source. The result is a double bath whose properties are analyzed

starting from a linear Boltzmann-Lorentz-Fokker-Planck equation, which is treated in

the diffusional approximation (large mass) to be cast into a Langevin equation.

Self-diffusion of an intruder [14, 15] or a tracer [16, 17] has been previously studied

in the Homogeneous Cooling State. The same calculations have been performed for

models with an impact velocity dependent restitution coefficient [18] and a good review

of main results can be found in the textbook [8]. Diffusion in a stationary granular fluid

obtained by imposing shear boundary conditions has also been considered [19].
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Up to our knowledge this is the first time that self-diffusion of a large mass intruder

is studied for a model with homogeneous energy injection, considering explicitly the

effect of a “double bath”, i.e. of both sources of noise, granular and external respectively.

A Langevin equation (31) with expressions for the tracer temperature, Eq. (34), mobility,

Eq. (32), and diffusion coefficients, Eq. (35), all involve the interplay of both energy

sources. The large mass limit, together with the Molecular Chaos assumption (due to

diluteness) guarantees that a granular Fluctuation-Dissipation theorem holds, where

the ratio between diffusion and mobility is simply given by the intruder granular

temperature [20, 21].

In Section 2 we introduce the model (granular gas, thermostat and intruder); in

Section 3 the Kramers-Moyal expansion and the large mass limit are discussed, leading to

the Langevin formulation in Section 3.2. Numerical experiments (Molecular Dynamics

and Direct Simulation Monte Carlo) are performed to study the limits of the used

assumptions in Section 4 and finally conclusions and perspectives are drawn in Section 5.

2. The model

We consider a gas of N granular spheres in d dimensions, each sphere has index i, with

i ∈ [1, N ], and mass mi. Particle i = 1 (referred to as “the intruder”) has mass M

and radius R, while all other particles (usually denoted as “the gas”) have mass m and

radius r. The parameter ǫ =
√

m/M will be used for large mass expansion. The system

is contained in a box of volume V = Ld, much greater than the volume occupied by the

particles, so that the hypothesis of molecular chaos applies. We denote by n = N/V the

density of the gas and by φ the occupied volume fraction (in d = 2 it is, for instance,

φ = π[(N − 1)r2 +R2]/V).
The intruder and the gas particles undergo binary instantaneous inelastic collisions

when coming at contact, with the following rule

vi = v′
i −

mj

mi +mj
(1 + α)

[(

v′
i − v′

j

)

· σ̂
]

σ̂ (1)

vj = v′
j +

mi

mi +mj
(1 + α)

[(

v′
i − v′

j

)

· σ̂
]

σ̂, (2)

where vi (vj) and v′
i (v

′
j) are the post and pre-collisional velocities of particle i (particle

j), respectively; α ∈ [0, 1] is the restitution coefficient ‡, and σ̂ is the unit vector

joining the centers of the colliding particles. The mean free path of the intruder

is l0 = 1/(n(r + R)d−1). Two kinetic temperatures can be introduced for the two

species: the gas granular temperature Tg = m〈v2i 〉/d (i > 1) and the intruder granular

temperature Ttr = M〈v21〉/d.
In order to maintain a fluidized granular gas, an external energy source is coupled

to every particle in the form of a thermal bath. The motion of a particle i with velocity

vi is then described by the following stochastic equation

miv̇i(t) = −γbvi(t) + fi(t) + ξb(t). (3)

‡ for simplicity we consider the restitution coefficient to be equal for all particles.
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Here fi(t) is the force taking into account the collisions with other particles, and ξb(t) is

a white noise, with 〈ξb(t)〉 = 0 and 〈ξb,iα(t)ξb,jβ(t′)〉 = 2Tbγbδijδαβδ(t− t′), where Latin

indices refer to particle labels while Greek indices denote Cartesian coordinates §.
The effect of the external energy source balances the energy lost in the collisions

and a stationary state is attained. Several temporal scales are important in this system:

• τ gc , the mean free time between collisions of a gas particle;

• τ trc , the mean free time between collisions of the intruder;

• τ gb = m/γb the typical interaction time of the bath with gas particles;

• τ trb = M/γb the typical interaction time of the bath with the intruder.

When γb is small enough to have the mean free times τ gc and τ trc smaller than the

interaction times τ gb and τ trb , inelasticity is sufficient to put the gas out of equilibrium:

this is reflected, among other things, in the failure of equipartition Tg < Tb and Ttr < Tb.

It is also known that Tg 6= Ttr [22, 23].

The main goal of this note is to show that, in the limit of large mass M , the

force f1 acting on the intruder can be expressed by means of a Langevin-like formula

f1(t) = −γgV(t) + ξg(t), providing explicit expressions for γg and 〈ξg(t)ξg(t′)〉.
In order to do that, let us start by writing the coupled Boltzmann equations for

the probability distributions P (V, t) and p(v, t), denoting (for simplicity) with V and

v the intruder velocity and the gas velocity, respectively

∂P (V, t)

∂t
=

∫

dV′[Wtr(V|V′)P (V′, t)−Wtr(V
′|V)P (V, t)] + BtrP (V, t)

∂p(v, t)

∂t
=

∫

dv′[Wg(v|v′)p(v′, t)−Wg(v
′|v)p(v, t)] + Bgp(v, t)

+ J [v|p, p], (4)

where Btr and Bg are two operators taking into account the interactions with the thermal

bath. In these equations the effects of the collisions for the tracer and the gas particles

are described by, respectively,

Wtr(V|V′) = χ

∫

dv′

∫

dσ̂p(v′, t)Θ [− (V′ − v′) · σ̂] (V′ − v′) · σ̂

× δ(d)
{

V −V′ +
ǫ2

1 + ǫ2
(1 + α) [(V′ − v′) · σ̂] σ̂

}

(5)

and

Wg(v|v′) =
χ

N

∫

dV′

∫

dσ̂P (V′, t)Θ [− (V′ − v′) · σ̂] (V′ − v′) · σ̂

× δ(d)
{

v − v′ +
1

1 + ǫ2
(1 + α) [(v′ −V′) · σ̂] σ̂

}

, (6)

where Θ(x) is the Heaviside step function, δ(d)(x) is the Dirac delta function in d

dimensions, and χ = g2(r+R)
l0

, g2(r + R) being the pair correlation function for a gas

§ We use a constant γb, but in principle this coefficient may depend on the mass and on the radius of

the particle, since it is only a model description of a more complicate interaction with plates, walls or

fluids going through the granular medium.
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particle and an intruder at contact; in the expressions (5) and (6) we have assumed

that the probability P2 (|x−X| = r +R,V,v, t) that a collision between the intruder

and a gas particle occurs, when they have velocities V and v and positions X and x

respectively, is given by the Enskog approximation [8]

P2 (|x−X| = r +R,V,v, t) = g2(r +R)P (V, t)p(v, t) (7)

which is a small correction to Molecular Chaos, taking into account density correlations

near the intruder; the terms describing the action of the thermal bath read

BtrP (V, t) =
γb
M

∂

∂V
[VP (V, t)] +

γbTb

M
∆V [P (V, t)] (8)

Bgp(v, t) =
γb
m

∂

∂v
[vp(v, t)] +

γbTb

m
∆v[p(v, t)], (9)

where ∆v is the Laplacian operator with respect to the velocity; finally, the Boltzmann

collision operator for the particle-particle interactions J [v|p, p], can be found in many

papers, see for instance [24]. In view of the fact that it is not relevant for the rest of the

paper, we omit its explicit expression.

2.1. Decoupling the gas from the tracer

The two Boltzmann equations appearing in the system (4) are coupled through the

terms involving Wtr and Wg. Nevertheless, if the number N of granular particles is large

enough, the term Wg can be neglected because of the factor 1/N in Eq. (6). Hence, the

surrounding gas is weakly perturbed by the tracer and fast and homogeneous relaxation

is expected. One assumes that the probability distribution function p(v) is stationary

and, following numerical evidence (verified below) it is approximated with a Gaussian

function with variance Tg/m:

p(v) =
1

√

(2πTg/m)d
exp

[

−mv2

2Tg

]

. (10)

Substituting Eq. (10) into Eq. (5), and projecting the velocities along the collision

direction and the orthogonal one, the integral can be solved [25], yielding

Wtr(V
′|V) = χk(ǫ)−2(V ′

σ − Vσ)
2−d 1

√

2πTg/m

× exp
{

−m
[

k(ǫ)−1 (V ′
σ − Vσ) + Vσ

]2
/(2Tg)

}

,

(11)

where Vσ = V · σ̂ (note that σ̂ is parallel to V′−V) and k(ǫ) = (1+α)ǫ2/(1+ ǫ2). From

now on we specialize to the two dimensional case, where the above equation simplifies

to

Wtr(V
′|V) = χ

1
√

2πTg/mk(ǫ)2

× exp
{

−m [V ′
σ − Vσ + k(ǫ)Vσ]

2
/(2Tgk(ǫ)

2)
}

. (12)
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As discussed in details below, once the gas is decoupled from the intruder, the dynamics

of the tracer alone is Markovian, and it is known that such transition rates satisfy

detailed balance with respect to a Gaussian invariant probability P (V) [25] (the

temperature of the tracer, in that case, where m = M , is given by α+1
3−α

Tg [26]).

2.2. Granular temperature of the gas

The granular temperature Tg can be obtained from the Langevin equation (3). Indeed,

multiplying by v(t) and averaging, one gets

1

2
m

d

dt
〈v2(t)〉 = −γb〈v(t)2〉+ 〈v(t)f(t)〉+ 〈v(t)ξb(t)〉. (13)

At stationarity, the l.h.s. of the above equation vanishes and 〈v(t)ξb(t)〉 = 2γbTb/m.

The term 〈v(t)f(t)〉 represents the average power dissipated by collisions, which we

assume to be dominated (this is true for N large enough) by gas-gas collisions:

〈v(t)f(t)〉 = −〈∆E〉col, (14)

where ∆E = 1/8m(1− α2)[(v1 − v2) · σ̂]2 is the energy dissipated per particle and the

collision average is defined by

〈. . .〉col = χg

∫

dσ̂

∫

dv1

∫

dv2 . . . p(v1)p(v2)Θ[−(v1 − v2) · σ̂]|(v1 − v2) · σ̂|.

where χg =
g′
2
(2r)

lg
0

and lg0 = 1/(n(2r)d−1) is the mean free path for gas-gas collisions and

g′2(2r) is the pair correlation function for two gas particles at contact. The integral in

Eq. (14) can be computed by standard methods [8], and, in two dimensions, yields

〈∆E〉col = χg

√
π(1− α2)√

m
T 3/2
g . (15)

Substituting this result into Eq. (13) and recalling that Tg = m〈v2〉/2, one finally obtains

the implicit equation

Tg = Tb − χg

√
πm(1− α2)

2γb
T 3/2
g , (16)

which can be solved to obtain Tg.

3. Kramers-Moyal expansion for the tracer-gas collision operator

With the assumption discussed above, the system of equations (4) is decoupled. That

allows us to write the following linear Master Equation for the tracer

∂P (V, t)

∂t
= Lgas[P (V, t)] + Lbath[P (V, t)], (17)

where Lgas[P (V, t)] is a linear operator which can be expressed by means of the Kramers-

Moyal expansion [27]

Lgas[P (V, t)] =
∞
∑

n=1

(−1)n∂n

∂Vj1 . . . ∂Vjn

D
(n)
j1...jn

(V)P (V, t), (18)
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(the sum over repeated indices is meant) with

D
(n)
j1...jn

(V) =
1

n!

∫

dV′(V ′
j1
− Vj1) . . . (V

′
jn − Vjn)Wtr(V

′|V), (19)

and Wtr is given by relation (12). The second term in the Master Equation represents

the interaction with thermal bath:

Lbath[P (V, t)] = BtrP (V, t). (20)

In the limit of large mass M , i.e. small ǫ, we expect that the interaction between the

granular gas and the tracer can be described by means of an effective Langevin equation.

In this case, we keep only the first two terms of the expansion [27]

Lgas[P (V, t)] = − ∂

∂Vi
[D

(1)
i (V)P (V, t)] +

∂2

∂Vi∂Vj
[D

(2)
ij (V)P (V, t)]. (21)

A justification of this truncation, in the limit of small ǫ, comes from observing that

terms D
(n)
j1...jn

are of order ǫ2n: this can be obtained by plugging Eqs. (1) (for the case of

the tracer, i.e. V ≡ v1) into (19).

It is useful at this point to introduce the velocity-dependent collision rate and the

total collision frequency

r(V) =

∫

dV′Wtr(V
′|V), (22)

ω =

∫

dV P (V)r(V). (23)

The former quantity can be exactly calculated, giving

r(V) = χ

√

π

2

(

Tg

m

)1/2

e−ǫ2q2/4

×
[

(ǫ2q2 + 2)I0

(

ǫ2q2

4

)

+ ǫ2q2I1

(

ǫ2q2

4

)]

, (24)

where the rescaled variable q = V/
√

Tg/M is introduced in Appendix through

Eqs. (A.14) and In(x) are the modified Bessel functions. To have an approximation

of ω, on the other side, one has to make a position about P (V). Let us take it to be

a Gaussian with variance Ttr/M . The consistency of this choice will be verified in the

following section. With this assumption, the collision rate turns out to be

ω = χ
√
2π

√

Tg/m+ Ttr/M = χ
√
2π

(

Tg

m

)1/2
√

1 +
Ttr

Tg
ǫ2 = ω0K(ǫ), (25)

where ω0 = χ
√
2π

(

Tg

m

)1/2

and K(ǫ) =
√

1 + Ttr

Tg
ǫ2.

3.1. Large mass limit

We are then able to compute the terms D
(1)
i and D

(2)
ij appearing in Lgas. The result

and the details of the computation of these coefficients as functions of ǫ are given
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in Appendix. Here, in order to be consistent with the approximation in (21), from

Eqs. (A.15) we report only terms up to O(ǫ4)

D(1)
x = − χ

√
2π

Tg

m
qx(1 + α)ǫ3 +O(ǫ5)

= − χ
√
2π

(

Tg

m

)1/2

(1 + α)ǫ2Vx +O(ǫ5)

= − ω0(1 + α)ǫ2Vx +O(ǫ5) (26)

D(1)
y = − ω0(1 + α)ǫ2Vy +O(ǫ5) (27)

D(2)
xx = D(2)

yy = χ
√

π/2

(

Tg

m

)3/2

(1 + α)2ǫ4 +O(ǫ5)

=
ω0

2

Tg

m
(1 + α)2ǫ4 +O(ǫ5) (28)

D(2)
xy = O(ǫ6). (29)

The linear dependence of D
(1)
β upon Vβ (for each component β), allows a granular

viscosity

ηg = ω0(1 + α)ǫ2. (30)

In the elastic limit α → 1, one retrieves the classical results: ηg → 2ω0ǫ
2 and

D
(2)
xx = D

(2)
yy → 2ω0ǫ

2 Tg

M
. In this limit the Fluctuation-Dissipation relation of the second

kind is satisfied [28, 29], i.e. the ratio between the noise amplitude and γg, associated

to the same source (collision with gas particles), is exactly Tg/M . When the collisions

are inelastic, α < 1, one sees two main effects: 1) the time scale associated to the drag

τg = 1/ηg is modified by a factor 1+α
2
, i.e. it is weakly influenced by inelasticity; 2) the

Fluctuation-Dissipation relation of the second kind is violated by the same factor 1+α
2
.

This is only a partial conclusion, which has to be re-considered in the context of the full

dynamics, including the external bath: this is discussed in the next section.

3.2. Langevin equation for the tracer

Putting together the results in Eqs. (26-29) with Eqs. (17-21), we are finally able to

write the Langevin equation for the tracer

MV̇ = −ΓV + E , (31)

where Γ = γb + γg and E = ξb + ξg, with

γg = Mηg = Mω0(1 + α)ǫ2 = ω0(1 + α)m (32)

〈Ei(t)Ej(t′)〉 = 2

[

γbTb + γg

(

1 + α

2
Tg

)]

δijδ(t− t′), (33)

concluding that the stationary velocity distribution of the intruder is Gaussian with

temperature

Ttr =
γbTb + γg

(

1+α
2
Tg

)

γb + γg
. (34)
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Equation (31) is consistent with the Gaussian ansatz used in computing ω0. Note that

the above expression for Ttr is consistent with the large mass expansion obtained in

Eqs. (29) only if it is dominated by Tg, for instance when γg ≫ γb (see discussion at

the end of Appendix A). In the opposite limit, the tracer dynamics is dominated by

the coupling with the external bath and the typical velocity of the tracer cannot be

taken sufficiently small with respect to the typical velocity of gas particles, making the

expansion unreliable. In this case, however, if the diameter of the intruder is similar to

that of the gas particles, it is reasonable to expect similar collision frequencies: the gas

particles will therefore be dominated by the external bath and the whole system will be

very near to equilibrium [30, 12].

For the self-diffusion coefficient it is immediately obtained

Dtr =

∫ ∞

0

dt〈Vx(t)Vx(0)〉 =
Ttr

Γ
=

γbTb + γg
(

1+α
2
Tg

)

(γb + γg)2
. (35)

Solving numerically the equation (16) and substituting the result into the above

equation, one can study Dtr as a function of the restitution coefficient α (this is done

numerically in the next section). When all other parameters are kept constant and α is

reduced from 1, the behavior of Dtr is non-monotonic, it decreases, has a minimum and

then increases for lower values of α. Anyway, this minimum is expected for quite low

values of α or high values of the packing fraction φ, where the approximations involved

in this theory are not good. For this reason, at the values of parameters chosen to have

a good comparison with simulations, this non-monotonic behavior is not observed.

It should be also noticed that, in the Homogeneous Cooling State, the self-diffusion

coefficient at a given granular temperature increases as α is reduced from 1, i.e. it has

an opposite behavior with respect to the present case [14, 15]. Other studies on different

models of driven granular gases have found expressions very close to Eq. (32), which is

not surprising considering the universality of the main ingredient for this quantity, i.e.

the collision integral [5, 31].

3.3. Energy fluxes and detailed balance

A few comments are in order, at this point, concerning the non-equilibrium properties of

this system. The first question comes about the term 1+α
2

which multiplies Tg in Eq. (34).

It is easily explained with the following argument [25]: we have assumed that the tracer

feels no memory of past collisions, which means that any post-collisional correlation

with recoiling gas particles is lost. With these assumption, the fate of recoiling particles

can be ignored and the dynamics concerns only the intruder:

V = V′ − (1 + α)
m

M +m
[(V′ − v) · σ̂]σ̂, (36)

where v is the pre-collisional velocity of the colliding gas particle (randomly extracted

from the given distribution p(v)). Then, one simply observes that for any value of α,

M and m, such rule can be rewritten as an elastic collision rule with an effective mass

M ′ = 2M+m
1+α

− m ≈ 2
1+α

M for large intruder mass. This is equivalent to say that the
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tracer has elastic interactions with the gas particles, with an effective mass M ′, and

therefore feels an effective temperature of the gas T ′
g = M

M ′
Tg = 1+α

2
Tg. Note that this

argument, for m = M , gives the formula T ′
g = 1+α

3−α
Tg, which has been derived for the

first time in [26].

The energy injection rates of the two thermostats [32] are

Qb = 〈V(t) · (ξb − γbV)〉 = 2
γb
M

(Tb − Ttr) (37)

Qg = 〈V(t) · (ξg − γgV)〉 = 2
γg
M

(T ′
g − Ttr) (38)

It is easy to see that the balance of fluxes Qb = −Qg is equivalent to formula (34) for

Ttr. This balance implies that, if Ttr < Tb, then Ttr > T ′
g. When α < 1, the two fluxes

are different from zero, i.e. energy is flowing from the external driving, through the

tracer, into the granular bath.

Apparently, this contradicts the “equilibrium” nature of the Langevin equation (31):

the tracer dynamics is Markovian and stationary, and the equation satisfies detailed

balance with respect to the Gaussian invariant distribution. As already discussed

in [25], this is not a paradox but only a consequence of Molecular Chaos and the

decoupling assumption which allows us to write Equation (17): here we have employed

the Enskog approximation, which is a weak modification of Molecular Chaos, still

preserving Markovianity, i.e. no memory terms appear in Eq. (4). The absence of

memory implies that both ξb and ξg are white noises and makes them indistinguishable:

an observer which can only measure V(t) cannot obtain separate measures of Qb and

Qg, but only a measure of the total energy flow Q = M〈V · V̇〉 = 0 which hides out

the presence of energy currents. A more detailed analysis, e.g. by relaxing the Enskog

approximation, should put in evidence the different time-correlations of the two baths:

eventually, the observer, by means of some “filter”, should be able to sort out their

different contributions Qb and Qg. This is an interesting example where memory plays

a crucial role in the non-equilibrium characterization of a system [33].

We expect that time reversibility (detailed balance) is a symmetry, for the intruder,

which is broken in the following cases: 1) at small values of M (this is different from the

case discussed in [25], where the intruder was not in contact with the external bath);

2) when the non-Gaussian behavior of the gas velocities is taken into account; 3) when

the tracer has asymmetric properties with respect to some spatial axis [34]; 4) when

Molecular Chaos (or its weak Enskog correction) is violated [5].

4. Numerical simulations

In this Section we report the results of Molecular Dynamics (MD) simulations of

the model, together with Direct Simulation Monte Carlo (DSMC) simulations [35]

incorporating the Enskog correction, and compare them with our theoretical predictions.

In all simulations we have kept constant the dimension d = 2, the mass of gas particles

m = 1 and the radii r = R = 0.01, as well as the properties of the bath Tb = 1 and

γb = 0.1; instead we have varied N , M , α and φ (values of L and n can be obtained
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from the knowledge of r and φ). We have used the Carnahan-Starling expression for g2
at contact [36]: g2(r + R) = (1 − 7

16
φ)/(1 − φ)2. For the chosen values of φ ≤ 0.07, it

is always g2(r + R) ≤ 1.12. In all simulations we have also checked that the Gaussian

approximations for the velocity distributions of gas particles and for the intruder are

satisfied, observing very small values for the second Sonine coefficient a2 ≤ 0.02 [8].

In Fig. 1 we show the velocity-velocity autocorrelation function C(t) = 〈Vx(t)Vx(0)〉
of the tracer for different values of its mass M = 100, 25, 5, 2 in a dilute and moderately

inelastic case: α = 0.8, and φ = 0.00785 (and N = 104 for MD). We can clearly observe

that in the case of large mass M = 100 the Langevin equation (31) describes very well

the dynamics of the tracer. Indeed, in that case, the numerical results are consistent

with the theoretical prediction

C(t) =
Ttr

M
e−

Γ

M
t. (39)

As expected, for smaller values of M , the numerical results move away from the

analytical ones and large corrections to the exponential decay do appear. The deviations

are observed (and are quantitatively similar) for both MD and DSMC results, implying

that they are due, as expected, to the breakdown of the large mass expansion, rather

than that of Molecular Chaos. For MD results we have noticed that, going from N = 103

to N = 104, the comparison with DSMC (and with theory at large M) is improved.

In order to check the validity of the hypothesis of molecular chaos, we report the

results of MD and DSMC simulations for higher packing fractions in Fig. 2, keeping

M = 100, N = 104 (in MD) and α = 0.8: since the clean part of the decay of C(t)

is always exponential, we focus only on the two parameters of interest, i.e. Ttr and γg.

One clearly observes that, increasing the packing fraction, the discrepancy between the

theoretical value and the values obtained from MD, increases. On the other side, DSMC

always gives results very close to theory, as expected. The Enskog approximation (7),

which does not take into account memory effects, is no longer valid in MD at high packing

fraction, while always holds in DSMC. In order to enforce this statement, we computed

the following correlation coefficient: CV um
= 〈δVxδum〉√

〈δV 2
x 〉
√

〈δu2
m〉
, where we introduced the

stochastic variable um(t) given by the averaged x-component velocity of the particles

lying, at time t, in a fixed area around the tracer. In particular, δVx and δum measure

the deviations of Vx and um from the average values, which tend to 0 for a large number

of measures. The coefficient defined above must be zero, if molecular chaos holds; on

the contrary we observed that its value sensibly increases as the packing fraction gets

higher. For example for φ = 0.00785 ,CV um
= 0.005 whereas, for φ = 0.07, CV um

= 0.07.

Finally let us compare the diffusion coefficient Dtr =
∫∞

0
dt C(t) measured in MD

and DSMC with the theoretical value obtained through Eqs. (16) and (35). In Fig. 3

we show our results at different values of α, keeping fixed M = 100, φ = 0.00785 and

N = 104 (in MD). Again there is a perfect match for DSMC, while MD simulations

present a small discrepancy which becomes more evident at small values of α. We have

again verified that this discrepancy is a finite N effect and is reduced as N increases.
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Figure 1. (Color online). The autocorrelation function C(t) = 〈Vx(t)Vx(0)〉 is

measured in MD and DSMC simulations (black circles and red diamonds, respectively)

for M = 100, 25, 5, 2 in the model with restitution coefficient α = 0.8 and packing

fraction φ = 0.00785 and coupled to a thermal bath with γb = 0.1 and Tb = 1. The

blue lines show the theoretical predictions of Eq. (39).

5. Conclusions

While many papers have been devoted to the large-mass diffusive properties of an

intruder in a cooling granular gas, the driven case, somehow, has received less

attention [19]: this is in contrast with the fact that, in real experiments, the most

common situation is a driven granular gas. The problem, at the level of the basic

assumptions treated here (Enskog approximation, negligible non-Gaussianity and large

separation of timescales between collisions and driving), does not pose particular

conceptual difficulties, nevertheless it reveals to be already quite rich. The external

driving mechanism, characterized by a temperature Tb and the “internal” granular bath

at temperature Tg < Tb, sum up together in giving a linear Langevin dynamics for

the intruder, provided that the collision frequency between the intruder and the gas

particles is larger than the frequency of interaction with the bath. Such Langevin
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Figure 2. (Color online). The temperature Ttr (top panel) and the drag coefficient γg
(bottom panel) measured in MD (black circles) and DSMC (red diamonds) is plotted

for different values of the packing fraction φ = 0.00785, 0.2, 0.5, 0.7 in the model with

M = 100, N = 104 (in MD) and α = 0.8 (error bars fall within the symbols). The

dashed blue lines show the theoretical predictions following from Eqs. (34,32).
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Figure 3. (Color online). The diffusion coefficient of the tracer Dtr is measured in

MD (black circles) and DSMC (red diamonds) simulations for different values of the

restitution coefficient α = 0.9, 0.8, 0.7, 0.6 in the model with M = 100 and packing

fraction φ = 0.00785. The dashed blue line shows the theoretical prediction following

from Eqs. (16,35). In the inset the same curve is plotted in the whole range α ∈ [0, 1].

equation predicts for the “intruder temperature” Ttr a weighted sum (with weights

given by the drag coefficients of the two baths) of Tb and T ′
g =

1+α
2
Tg, i.e. the intruder

feels the surrounding gas to be at a different temperature T ′
g < Tg, because of non-

conservative interactions. The self-diffusion coefficient is even more interesting, showing

a non-trivial non-monotonic behavior with a minimum at low values of the restitution

coefficient. Our results lose validity when the mass of the intruder is reduced, when the

packing fraction of the gas is increased, when the inelasticity is too low to disregard

non-Gaussian corrections, and when the interaction times of the two baths become

comparable.
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It is interesting to discuss what is happening at moderately high packing fractions

φ ∼ 10%: we have seen that the Enskog approximation is not very good to predict the

intruder dynamics, because it is missing memory effects mediated by the surrounding

fluid. A scenario which can be conjectured is the following: the gas may display

two typical relaxation times, a local one related to collisions τrel ∼ τ gc and a global

one τ ′rel > τrel, which is due to diffusion of slower modes (e.g. hydrodynamics). If

τ ′rel > τ trc > τrel, one has that the intruder feels a “locally equilibrated” surrounding

granular gas. In this case it is reasonable to replace Eq. (10) with

p(v) =
1

√

(2πTg/m)d
exp

[

−m(v − u)2

2Tg

]

(40)

where u and Tg are some local velocity and temperature fields which change on timescales

larger than τ trc (and correspondingly large spatial scales). A partial verification of this

scenario has been mentioned at the end of [5], but requires further investigation.
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Appendix A. Calculation of first two coefficients of the Kramers-Moyal

expansion

For larger generality (whose motivation is discussed in the Conclusions), in this

Appendix we discuss the case where the gas surrounding the intruder may have a non-

zero average u ‖:

p(v) =
1

√

(2πTg/m)d
exp

[

−m(v − u)2

2Tg

]

(A.1)

which is a simple task involving only the definition of new shifted variables

c = V − u (A.2)

c′ = V′ − u. (A.3)

We are interested in computing

D
(1)
i (V) =

∫

dV′(V ′
i − Vi)Wtr(V

′|V)

=

∫

dc′(c′i − ci)χ
1

√

2πTg/mk(ǫ)2

× exp
{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

. (A.4)

‖ note that in all the cases discussed in the main text, we have always taken u = 0.
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Figure A1. An example for the change of variables (c′x, c
′

y) → (cσ, c
′

σ), introduced in

Eq. (A.5). Such change of variable, when inverted, has two possible determinations:

in this example both represented vectors c′ yield the same (cσ, c
′

σ).

In order to perform the integral, we make the following change of variables (see

Fig. A1 for an example)

cσ = cx
c′x − cx

√

(c′x − cx)2 + (c′y − cy)2
+ cy

c′y − cy
√

(c′x − cx)2 + (c′y − cy)2

c′σ = c′x
c′x − cx

√

(c′x − cx)2 + (c′y − cy)2
+ c′y

c′y − cy
√

(c′x − cx)2 + (c′y − cy)2
(A.5)

which implies

dc′ = dc′xdc
′
y → dcσdc

′
σ|J |, (A.6)

where

|J | = |c′σ − cσ|
√

c2x + c2y − c2σ
Θ(c2x + c2y − c2σ) (A.7)

is the Jacobian of the transformation. The collision rate is then

r(V) = χ

√

π

2Tg/m
e
−mc2

4Tg

[

(c2 + 2Tg/m)I0

(

mc2

4Tg

)

+ c2I1

(

mc2

4Tg

)]

, (A.8)

where In(x) are the modified Bessel functions. For D
(1)
i we can write

D
(1)
i (V) = χ

∫ +∞

−∞

dcσ

∫ ∞

cσ

dc′σ(c
′
i − ci)|J |

1
√

2πTg/mk(ǫ)2

× exp
{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

= χ

∫ +c

−c

dcσ

∫ ∞

cσ

dc′σ(c
′
i − ci)

c′σ − cσ
√

c2 − c2σ

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

(A.9)
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where we have enforced the constraint of the theta function, namely cσ ∈ (−c,+c), with

c =
√

c2x + c2y. Notice that the integral in dc′σ is lower bounded by the condition c′σ ≥ cσ
which follows from the definition of cσ. In order to compute the integral, we have to

invert the transformation (A.5). That yields two determinations for the variables c′x and

c′y (see Fig. A1)

(A)







c′x − cx = c′σ−cσ
c2

(

cσcx + cySign(cx)
√

c2 − c2σ

)

c′y − cy =
c′σ−cσ

c2

(

cσcy − cxSign(cx)
√

c2 − c2σ

)

(B)







c′x − cx = c′σ−cσ
c2

(

cσcx − cySign(cx)
√

c2 − c2σ

)

c′y − cy =
c′σ−cσ

c2

(

cσcy + cxSign(cx)
√

c2 − c2σ

)

Then the integral (A.9) can be written as

D(1)
x (V) =

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ
[

(c′x − cx)
(A) + (c′x − cx)

(B)
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

,

(A.10)

yielding

D(1)
x = − 2

3

1

l0
k(ǫ)

√

mπ

2Tg
cxe

−mc2

4Tg

[

(c2 + 3Tg/m)I0(
mc2

4Tg
) + (c2 + Tg/m)I1(

mc2

4Tg
)

]

,

D(1)
y = − 2

3

1

l0
k(ǫ)

√

mπ

2Tg

cye
−mc2

4Tg

[

(c2 + 3Tg/m)I0(
mc2

4Tg

) + (c2 + Tg/m)I1(
mc2

4Tg

)

]

.

(A.11)

Analogously, for the coefficients D
(2)
ij one obtains

D(2)
xx (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ

[

(

(c′x − cx)
(A)

)2
+
(

(c′x − cx)
(B)

)2
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

=
1

2

1

l0

k(ǫ)2

15

√

2mπ

Tg
e
−mc2

4Tg

×
{[

c2(4c2x + c2y) + 3Tg(7c
2
x + 3c2y)/m+ 15T 2

g /m
2
]

I0

(

mc2

4Tg

)

+
[

c2(4c2x + c2y) + Tg(13c
2
x + 7c2y)/m+ 3T 2

g /m
2
−c2x + c2y

c2

]

I1

(

mc2

4Tg

)

}

,

(A.12)
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D(2)
xy (V) =

1

2

1

l0

∫ c

−c

dcσ

∫ ∞

cσ

dc′σ
[

(c′x − cx)
(A)(c′y − cy)

(A) + (c′x − cx)
(B)(c′y − cy)

(B)
]

|J |

× 1
√

2πTg/mk(ǫ)2
exp

{

−m [c′σ + (k(ǫ)− 1)cσ]
2
/(2Tgk(ǫ)

2)
}

=
1

2

1

l0

k(ǫ)2

5

√

2mπ

Tg
e
−mc2

4Tg cxcy

×
[

(c2 + 4Tg/m)I0

(

mc2

4Tg

)

+
c4 + 2c2Tg/m− 2T 2

g /m
2

c2
I1

(

mc2

4Tg

)]

.

(A.13)

Then we introduce the rescaled variables

qx =
cx

√

Tg/m
ǫ−1 qy =

cy
√

Tg/m
ǫ−1, (A.14)

obtaining

D(1)
x (V) = − 2

3

1

l0

√

π

2

Tg

m
qxk(ǫ)ǫe

− ǫ2q2

4

[

(

ǫ2q2 + 3
)

I0(
ǫ2q2

4
) +

(

ǫ2q2 + 1
)

I1(
ǫ2q2

4
)

]

,

D(2)
xx (V) =

1

2

1

l0

1

15

√
2π

(

Tg

m

)3/2

k(ǫ)2e−
ǫ2q2

4

×
{

[

ǫ4q2(4q2x + q2y) + 3ǫ2(7q2x + 3q2y) + 15
]

I0

(

ǫ2q2

4

)

+

[

ǫ4q2(4q2x + q2y) + ǫ2(13q2x + 7q2y) + 3
−q2x + q2y

q2

]

I1

(

ǫ2q2

4

)

}

D(2)
xy (V) =

1

2

1

l0

1

5

√
2π

(

Tg

m

)3/2

qxqyk(ǫ)
2ǫ2e−

ǫ2q2

4

×
[

(

ǫ2q2 + 4
)

I0

(

ǫ2q2

4

)

+

(

ǫ4q4 + 2ǫ2q2 − 2

ǫ2q2

)

I1

(

ǫ2q2

4

)]

. (A.15)

Up to this last results we have not introduced any small ǫ approximation. The next

step consists in assuming that q ∼ O(1) with respect to ǫ, which is equivalent to assume

that c2 ∼ Tg/M : this assumption must be compared to its consequences, in particular

to Eq. (34); the assumption is good for not too small values of α and for γg ≫ γb, i.e.

when Ttr ∼ Tg. When this is the case, expanding in ǫ and using that I0(x) ∼ 1 + x2/4

and I1(x) ∼ x/2 for small x, one finds Eqs. (29).

References

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquids, and gases. Reviews of

Modern Physics, 68:1259, 1996.
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