63 research outputs found

    Detection of multiple strains of Mycobacterium tuberculosis using MIRU-VNTR in patients with pulmonary tuberculosis in Kampala, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies using DNA fingerprinting to differentiate <it>Mycobacterium tuberculosis </it>(MTB) strains reveal single strains in cultures, suggesting that most disease is caused by infection with a single strain. However, recent studies using molecular epidemiological tools that amplify multiple targets have demonstrated simultaneous infection with multiple strains of MTB. We aimed to determine the prevalence of MTB multiple strain infections in Kampala, and the impact of these infections on clinical presentation of tuberculosis (TB) and response to treatment.</p> <p>Methods</p> <p>A total of 113 consecutive smear and culture positive patients who previously enrolled in a house-hold contact study were included in this study. To determine whether infection with multiple MTB strains has a clinical impact on the initial presentation of patients, retrospective patient data (baseline clinical, radiological and drug susceptibility profiles) was obtained. To determine presence of infections with multiple MTB strains, MIRU-VNTR (Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeats) -PCR was performed on genomic DNA extracted from MTB cultures of smear positive sputum samples at baseline, second and fifth months.</p> <p>Results</p> <p>Of 113 patients, eight (7.1%) had infection with multiple MTB strains, coupled with a high rate of HIV infection (37.5% versus 12.6%, <it>p </it>= 0.049). The remaining patients (105) were infected with single MTB strains. The proportions of patients with MTB smear positive cultures after two and five months of treatment were similar. There was no difference between the two groups for other variables.</p> <p>Conclusion</p> <p>Infection with multiple MTB strains occurs among patients with first episode of pulmonary tuberculosis in Kampala, in a setting with high TB incidence. Infection with multiple MTB strains had little impact on the clinical course for individual patients. This is the first MIRU-VNTR-based study from in an East African country.</p

    Exportation of MDR TB to europe from setting with actively transmitted persistent strains in peru

    Get PDF
    We performed a cross-border molecular epidemiology analysis of multidrug-resistant tuberculosis in Peru, Spain, and Italy. This analysis revealed frequent transmission in Peru and exportation of a strain that recreated similar levels of transmission in Europe during 2007–2017. Transnational efforts are needed to control transmission of multidrug-resistant tuberculosis globally

    Molecular Epidemiology of HIV-Associated Tuberculosis in Dar es Salaam, Tanzania: Strain Predominance, Clustering, and Polyclonal Disease.

    Get PDF
    Molecular typing of Mycobacterium tuberculosis can be used to elucidate the epidemiology of tuberculosis, including the rates of clustering, the frequency of polyclonal disease, and the distribution of genotypic families. We performed IS6110 typing and spoligotyping on M. tuberculosis strains isolated from HIV-infected subjects at baseline or during follow-up in the DarDar Trial in Tanzania and on selected community isolates. Clustering occurred in 203 (74%) of 275 subjects: 124 (80%) of 155 HIV-infected subjects with baseline isolates, 56 (69%) of 81 HIV-infected subjects with endpoint isolates, and 23 (59%) of 39 community controls. Overall, 113 (41%) subjects had an isolate representing the East Indian "GD" family. The rate of clustering was similar among vaccine and placebo recipients and among subjects with or without cellular immune responses to mycobacterial antigens. Polyclonal disease was detected in 6 (43%) of 14 patients with multiple specimens typed. Most cases of HIV-associated tuberculosis among subjects from this study in Dar es Salaam resulted from recently acquired infection. Polyclonal infection was detected and isolates representing the East Indian GD strain family were the most common

    Performance of the Genotype® MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.</p> <p>Results</p> <p>We performed an evaluation of the GenoType<sup>® </sup>MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system.</p> <p>Interpretable GenoType<sup>® </sup>MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the <it>rpoB </it>gene and codon 315 of the <it>katG </it>gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).</p> <p>Conclusion</p> <p>High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType<sup>® </sup>MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.</p

    Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim

    Get PDF
    Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics . For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans

    The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: Providing guidelines for Quality Assurance when working on membranes

    Get PDF
    Contains fulltext : 124321.pdf (publisher's version ) (Open Access)BACKGROUND: The classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis CRISPR locus, is used world-wide (598 references in Pubmed on April 8th, 2011). However, until now no inter-laboratory quality control study had been undertaken to validate this technique. We analyzed the quality of membrane-based spoligotyping by comparing it to the recently introduced and highly robust microbead-based spoligotyping. Nine hundred and twenty-seven isolates were analyzed totaling 39,861 data points. Samples were received from 11 international laboratories with a worldwide distribution. METHODS: The high-throughput microbead-based Spoligotyping was performed on CTAB and thermolyzate DNA extracted from isolated Mycobacterium tuberculosis complex (MTC) strains coming from the genotyping participating centers. Information regarding how the classical Spoligotyping method was performed by center was available. Genotype discriminatory analyses were carried out by comparing the spoligotypes obtained by both methods. The non parametric U-Mann Whitney homogeneity test and the Spearman rank correlation test were performed to validate the observed results. RESULTS: Seven out of the 11 laboratories (63%), perfectly typed more than 90% of isolates, 3 scored between 80-90% and a single center was under 80% reaching 51% concordance only. However, this was mainly due to discordance in a single spacer, likely having a non-functional probe on the membrane used. The centers using thermolyzate DNA performed as well as centers using the more extended CTAB extraction procedure. Few centers shared the same problematic spacers and these problematic spacers were scattered over the whole CRISPR locus (Mostly spacers 15, 14, 18, 37, 39, 40). CONCLUSIONS: We confirm that classical spoligotyping is a robust method with generally a high reliability in most centers. The applied DNA extraction procedure (CTAB or thermolyzate) did not affect the results in this study. However performance was center-dependent, suggesting that training is a key component in quality assurance of spoligotyping. Overall, no particular spacer yielded a higher degree of deviating results, suggesting that errors occur randomly either in the process of re-using membranes, or during the reading of the results and transferring of data from the film to a digital file. Last, the performance of the microbead-based method was excellent as previously shown by Cowan et al. (J. Clin. Microbiol. 2004) and Zhang et al. (J. Med. Microbiol. 2009) and demonstrated the proper detection of spacer 15 that is known to occasionally give weak signals in the classical spoligotyping

    Whole genome sequencing reveals mycobacterial microevolution among concurrent isolates from sputum and blood in HIV infected TB patients

    Get PDF
    YesBackground In the context of advanced immunosuppression, M. tuberculosis is known to cause detectable mycobacteremia. However, little is known about the intra-patient mycobacterial microevolution and the direction of seeding between the sputum and blood compartments. Methods From a diagnostic study of HIV-infected TB patients, 51 pairs of concurrent blood and sputum M. tuberculosis isolates from the same patient were available. In a previous analysis, we identified a subset with genotypic concordance, based on spoligotyping and 24 locus MIRU-VNTR. These paired isolates with identical genotypes were analyzed by whole genome sequencing and phylogenetic analysis. Results Of the 25 concordant pairs (49 % of the 51 paired isolates), 15 (60 %) remained viable for extraction of high quality DNA for whole genome sequencing. Two patient pairs were excluded due to poor quality sequence reads. The median CD4 cell count was 32 (IQR; 16–101)/mm3 and ten (77 %) patients were on ART. No drug resistance mutations were identified in any of the sequences analyzed. Three (23.1 %) of 13 patients had SNPs separating paired isolates from blood and sputum compartments, indicating evidence of microevolution. Using a phylogenetic approach to identify the ancestral compartment, in two (15 %) patients the blood isolate was ancestral to the sputum isolate, in one (8 %) it was the opposite, and ten (77 %) of the pairs were identical. Conclusions Among HIV-infected patients with poor cellular immunity, infection with multiple strains of M. tuberculosis was found in half of the patients. In those patients with identical strains, whole genome sequencing indicated that M. tuberculosis intra-patient microevolution does occur in a few patients, yet did not reveal a consistent direction of spread between sputum and blood. This suggests that these compartments are highly connected and potentially seed each other repeatedly

    Presence of RD149 Deletions in M. tuberculosis Central Asian Strain1 Isolates Affect Growth and TNFα Induction in THP-1 Monocytes

    Get PDF
    Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences

    Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    Get PDF
    Contains fulltext : 168172.pdf (publisher's version ) (Open Access)Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow
    corecore