669 research outputs found
The Immirzi Parameter as an Instanton Angle
The Barbero-Immirzi parameter is a one parameter quantization ambiguity
underpinning the loop approach to quantum gravity that bears tantalizing
similarities to the theta parameter of gauge theories such as Yang-Mills and
QCD. Despite the apparent semblance, the Barbero-Immirzi field has resisted a
direct topological interpretation along the same lines as the theta-parameter.
Here we offer such an interpretation. Our approach begins from the perspective
of Einstein-Cartan gravity as the symmetry broken phase of a de Sitter gauge
theory. From this angle, just as in ordinary gauge theories, a theta-term
emerges from the requirement that the vacuum is stable against quantum
mechanical tunneling. The Immirzi parameter is then identified as a combination
of Newton's constant, the cosmological constant, and the theta-parameter.Comment: 24 page
Influence of initial stress distribution on liquefaction-induced settlement of shallow foundations
During earthquakes, saturated sandy soils may generate significant excess pore pressures and approach a state of liquefaction. Structures founded on shallow foundations above such soils may consequently undergo large settlements. Recent case history analysis has shown that the stress imposed by the foundation is a key factor in the estimation of such settlements. However, the case history data showed that although increasing bearing pressure caused an increase in settlements as expected, this was only true up to a point, and that very heavy structures appeared to settle less than some lighter structures. This work aims to investigate these counter-intuitive results by means of controlled experimental testing using a geotechnical centrifuge. Results of the centrifuge tests show that the trend derived from case histories is correct and that liquefaction-induced settlements peak for a given bearing stress (90 kPa for the models tested) and reduce for greater applied stresses. Further, by analysis of excess pore pressure distributions beneath the foundations it is shown that the main factor inhibiting pore pressure generation beneath the footings is not so much the confining pressure as the in-situ static shear stress around the edge of the foundation. This is supported by element test data from the literature. When this initial static shear stress is so high that the applied cyclic shear stress cannot exceed it (i.e. the direction of shear stress does not reverse) then pore pressure generation is greatly reduced, thus causing the observed reduction in expected settlements.All data created during this research are openly available from the University of Dundee repository Discovery at http://doi.org/10.15132/10000116</p
An inhomogeneous universe with thick shells and without cosmological constant
We build an exact inhomogeneous universe composed of a central flat Friedmann
zone up to a small redshift , a thick shell made of anisotropic matter, an
hyperbolic Friedmann metric up to the scale where dimming galaxies are observed
() that can be matched to a hyperbolic Lema\^{i}tre-Tolman-Bondi
spacetime to best fit the WMAP data at early epochs. We construct a general
framework which permits us to consider a non-uniform clock rate for the
universe. As a result, both for a uniform time and a uniform Hubble flow, the
deceleration parameter extrapolated by the central observer is always positive.
Nevertheless, by taking a non-uniform Hubble flow, it is possible to obtain a
negative central deceleration parameter, that, with certain parameter choices,
can be made the one observed currently. Finally, it is conjectured a possible
physical mechanism to justify a non-uniform time flow.Comment: Version published in Class. Quantum gra
LTB solutions in Newtonian gauge: from strong to weak fields
Lemaitre-Tolman-Bondi (LTB) solutions are used frequently to describe the
collapse or expansion of spherically symmetric inhomogeneous mass distributions
in the Universe. These exact solutions are obtained in the synchronous gauge
where nonlinear dynamics (with respect to the FLRW background) induce large
deviations from the FLRW metric. In this paper we show explicitly that this is
a gauge artefact (for realistic sub-horizon inhomogeneities). We write down the
nonlinear gauge transformation from synchronous to Newtonian gauge for a
general LTB solution using the fact that the peculiar velocities are small. In
the latter gauge we recover the solution in the form of a weakly perturbed FLRW
metric that is assumed in standard cosmology. Furthermore we show how to obtain
the LTB solutions directly in Newtonian gauge and illustrate how the Newtonian
approximation remains valid in the nonlinear regime where cosmological
perturbation theory breaks down. Finally we discuss the implications of our
results for the backreaction scenario.Comment: 17 page
"Swiss-Cheese" Inhomogeneous Cosmology & the Dark Energy Problem
We study an exact swiss-cheese model of the Universe, where inhomogeneous LTB
patches are embedded in a flat FLRW background, in order to see how
observations of distant sources are affected. We find negligible integrated
effect, suppressed by (L/R_{H})^3 (where L is the size of one patch, and R_{H}
is the Hubble radius), both perturbatively and non-perturbatively. We
disentangle this effect from the Doppler term (which is much larger and has
been used recently \cite{BMN} to try to fit the SN curve without dark energy)
by making contact with cosmological perturbation theory.Comment: 35 pages, 6 figure
A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web
Over the past decade, rapid advances in web technologies, coupled with
innovative models of spatial data collection and consumption, have generated a
robust growth in geo-referenced information, resulting in spatial information
overload. Increasing 'geographic intelligence' in traditional text-based
information retrieval has become a prominent approach to respond to this issue
and to fulfill users' spatial information needs. Numerous efforts in the
Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the
Linking Open Data initiative have converged in a constellation of open
knowledge bases, freely available online. In this article, we survey these open
knowledge bases, focusing on their geospatial dimension. Particular attention
is devoted to the crucial issue of the quality of geo-knowledge bases, as well
as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic
Network, is outlined as our contribution to this area. Research directions in
information integration and Geographic Information Retrieval (GIR) are then
reviewed, with a critical discussion of their current limitations and future
prospects
Shellac-Structure, Characteristics & Modification
The paper attempts to document upto date status of the structural studies of Shellac. Attempt has also been made to review the literature on modification of shellac molecules to make it more acceptable to meet the growing demand of the users
A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding
This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ2 − σ3)/(σ1 − σ3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane
Identification of priority health conditions for field-based screening in urban slums in Bangalore, India
BACKGROUND: Urban slums are characterised by unique challenging living conditions, which increase their inhabitants' vulnerability to specific health conditions. The identification and prioritization of the key health issues occurring in these settings is essential for the development of programmes that aim to enhance the health of local slum communities effectively. As such, the present study sought to identify and prioritise the key health issues occurring in urban slums, with a focus on the perceptions of health professionals and community workers, in the rapidly growing city of Bangalore, India. METHODS: The study followed a two-phased mixed methods design. During Phase I of the study, a total of 60 health conditions belonging to four major categories: - 1) non-communicable diseases; 2) infectious diseases; 3) maternal and women's reproductive health; and 4) child health - were identified through a systematic literature review and semi-structured interviews conducted with health professionals and other relevant stakeholders with experience working with urban slum communities in Bangalore. In Phase II, the health issues were prioritised based on four criteria through a consensus workshop conducted in Bangalore. RESULTS: The top health issues prioritized during the workshop were: diabetes and hypertension (non-communicable diseases category), dengue fever (infectious diseases category), malnutrition and anaemia (child health, and maternal and women's reproductive health categories). Diarrhoea was also selected as a top priority in children. These health issues were in line with national and international reports that listed them as top causes of mortality and major contributors to the burden of diseases in India. CONCLUSIONS: The results of this study will be used to inform the development of technologies and the design of interventions to improve the health outcomes of local communities. Identification of priority health issues in the slums of other regions of India, and in other low and lower middle-income countries, is recommended
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
- …
