472 research outputs found

    GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors

    Get PDF
    The conventional definition of ground-level enhancement (GLE) events requires a detection of solar energetic particles (SEP) by at least two differently located neutron monitors. Some places are exceptionally well suitable for ground-based detection of SEP - high-elevation polar regions with negligible geomagnetic and reduced atmospheric energy/rigidity cutoffs. At present, there are two neutron-monitor stations in such locations on the Antarctic plateau: SOPO/SOPB (at Amundsen-Scott station, 2835 m elevation), and DOMC/DOMB (at Concordia station, 3233 m elevation). Since 2015, when the DOMC/DOMB station started continuous operation, a relatively weak SEP event that was not detected by sea-level neutron-monitor stations was registered by both SOPO/SOPB and DOMC/DOMB, and it was accordingly classified as a GLE. This would lead to a distortion of the homogeneity of the historic GLE list and the corresponding statistics. To address this issue, we propose to modify the GLE definition so that it maintains the homogeneity: A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors, including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s). Relatively weak SEP events registered only by high-altitude polar neutron monitors, but with no response from cosmic-ray stations at sea level, can be classified as sub-GLEs

    The solar magnetic field since 1700: II. Physical reconstruction of total, polar and open flux

    Full text link
    We have used semi-synthetic records of emerging sunspot groups based on sunspot number data as input for a surface flux transport model to reconstruct the evolution of the large-scale solar magnetic field and the open heliospheric flux from the year 1700 onward. The statistical properties of the semi-synthetic sunspot group records reflect those of the observed the Royal Greenwich Observatory photoheliographic results. These include correlations between the sunspot numbers and sunspot group latitudes, longitudes, areas and tilt angles. The reconstruction results for the total surface flux, the polar field, and the heliospheric open flux (determined by a current sheet source surface extrapolation) agree well with the available observational or empirically derived data and reconstructions. We confirm a significant positive correlation between the polar field during activity minimum periods and the strength of the subsequent sunspot cycle, which has implications for flux transport dynamo models for the solar cycle. Just prior to the Dalton minimum, at the end of the 18th century, a long cycle was followed by a weak cycle. We find that introducing a possibly `lost' cycle between 1793 and 1800 leads to a shift of the minimum of the open flux by 15 years which is inconsistent with the cosmogenic isotope record.Comment: A&A, accepte

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Solar Grand Minima and random fluctuations in dynamo parameters

    Full text link
    We consider to what extent the long-term dynamics of cyclic solar activity in the form of Grand Minima can be associated with random fluctuations of the parameters governing the solar dynamo. We consider fluctuations of the alpha-coefficient in the conventional Parker migratory dynamo, and also in slightly more sophisticated dynamo models, and demonstrate that they can mimic the gross features of the phenomenon of the occurrence of Grand Minima over a suitable parameter range. The temporal distribution of these Grand Minima appears chaotic, with a more or less exponential waiting time distribution, typical of Poisson processes. In contrast however, the available reconstruction of Grand Minima statistics based on cosmogenic isotope data demonstrates substantial deviations from this exponential law. We were unable to reproduce the non-Poissonic tail of the waiting time distribution either in the framework of a simple alpha-quenched Parker model, or in its straightforward generalization, nor in simple models with feedback on the differential rotation. We suggest that the disagreement may only be apparent and is plausibly related to the limited observational data, and that the observations and results of numerical modeling can be consistent and represent physically similar dynamo regimes.Comment: Solar Physics, in prin

    Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records

    Get PDF
    The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar explosions by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while flares on magnetically-active, young Sun-like stars have energies and frequencies markedly in excess of strong solar flares, even after an empirical scaling with the mean activity level of these stars. In order to empirically quantify the frequency of uncommonly large solar flares extensive surveys of stars of near-solar age need to be obtained, such as is feasible with the Kepler satellite. Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years.Comment: 14 pages, 3 figures (in press as of 2012/06/18); Journal of Geophysical Research (Space Physics), 201

    Large Predicted Self-Field Critical Current Enhancements In Superconducting Strips Using Magnetic Screens

    Full text link
    A transport current distribution over a wide superconducting sheet is shown to strongly change in a presence of bulk magnetic screens of a soft magnet with a high permeability. Depending on the geometry, the effect may drastically suppress or protect the Meissner state of the sheet through the enhancement or suppression of the edge barrier critical current. The total transport current in the magnetically screened Meissner state is expected to compete with the critical current of the flux-filled sheet only for samples whose critical current is initially essentially controlled by the edge barrier effect.Comment: 6 figure
    corecore