655 research outputs found

    Recommended Thermal Rate Coefficients for the C + H3+_3^+ Reaction and Some Astrochemical Implications

    Get PDF
    We have incorporated our experimentally derived thermal rate coefficients for C + H3+_3^+ forming CH+^+ and CH2+_2^+ into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and use instead a more versatile fitting formula. At a temperature of 10 K and a density of 104^4 cm−3^{-3}, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. Additionally, we find that the relatively small error on our thermal rate coefficients, ∼15%\sim15\%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.Comment: 19 pages, 5 figures. Accepted for publication in Ap

    Merged-beams Reaction Studies of O + H_3^+

    Get PDF
    We have measured the reaction of O + H3+ forming OH+ and H2O+. This is one of the key gas-phase astrochemical processes initiating the formation of water molecules in dense molecular clouds. For this work, we have used a novel merged fast-beams apparatus which overlaps a beam of H3+ onto a beam of ground-term neutral O. Here, we present cross section data for forming OH+ and H2O+ at relative energies from \approx 3.5 meV to \approx 15.5 and 0.13 eV, respectively. Measurements were performed for statistically populated O(3PJ) in the ground term reacting with hot H3+ (with an internal temperature of \approx 2500-3000 K). From these data, we have derived rate coefficients for translational temperatures from \approx 25 K to \approx 10^5 and 10^3 K, respectively. Using state-of-the-art theoretical methods as a guide, we have converted these results to a thermal rate coefficient for forming either OH+ or H2O+, thereby accounting for the temperature dependence of the O fine-structure levels. Our results are in good agreement with two independent flowing afterglow measurements at a temperature of \approx 300 K, and with a corresponding level of H3+ internal excitation. This good agreement strongly suggests that the internal excitation of the H3+ does not play a significant role in this reaction. The Langevin rate coefficient is in reasonable agreement with the experimental results at 10 K but a factor of \approx 2 larger at 300 K. The two published classical trajectory studies using quantum mechanical potential energy surfaces lie a factor of \approx 1.5 above our experimental results over this 10-300 K range.Comment: 43 pages, 11 figures. Submitted to the Astrophysical Journa

    Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Get PDF
    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼\sim7.4\% for H−^- at a beam energy of 10\,keV and ∼\sim3.7\% for C−^- at 28\,keV. The diode laser systems used here operate at 975\,nm and 808\,nm, respectively, and provide high continuous power levels of up to 2\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table

    Isotope effect for associative detachment: H(D)−+H(D)→H2(D2)+e

    Get PDF
    We report experimental and theoretical results for associative detachment (AD) of D−+D→D2+e−. We compare these data to our previously published results for H−+H→H2+e−. The measurements show no significant isotope effect in the total cross section. This is to be contrasted with previously published experimental and theoretical work which has found a significant isotope effect in diatomic systems for partial AD cross sections, i.e., as a function of the rotational and vibrational levels of the final molecule formed. Our work implies that though the rovibrational distribution of flux is different for AD of H− + H and D− + D, the total flux for these two systems is essentially the same when summed over all possible final channels

    High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138266/1/ajp22684.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138266/2/ajp22684_am.pd

    Assignment of resonances in dissociative recombination of HD+ ions: high-resolution measurements compared with accurate computations

    Full text link
    The collision-energy resolved rate coefficient for dissociative recombination of HD+ ions in the vibrational ground state is measured using the photocathode electron target at the heavy-ion storage ring TSR. Rydberg resonances associated with ro-vibrational excitation of the HD+ core are scanned as a function of the electron collision energy with an instrumental broadening below 1 meV in the low-energy limit. The measurement is compared to calculations using multichannel quantum defect theory, accounting for rotational structure and interactions and considering the six lowest rotational energy levels as initial ionic states. Using thermal equilibrium level populations at 300 K to approximate the experimental conditions, close correspondence between calculated and measured structures is found up to the first vibrational excitation threshold of the cations near 0.24 eV. Detailed assignments, including naturally broadened and overlapping Rydberg resonances, are performed for all structures up to 0.024 eV. Resonances from purely rotational excitation of the ion core are found to have similar strengths as those involving vibrational excitation. A dominant low-energy resonance is assigned to contributions from excited rotational states only. The results indicate strong modifications in the energy dependence of the dissociative recombination rate coefficient through the rotational excitation of the parent ions, and underline the need for studies with rotationally cold species to obtain results reflecting low-temperature ionized media.Comment: 15 pages, 10 figures. Paper to appear in Phys. Rev. A (version as accepted

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    Removal of imidacloprid using activated carbon produced from ricinodendron heudelotii shells

    Get PDF
    In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that the prepared activated carbon has a microstructure and a higher specific surface area (1179 m2/g), suggesting that the acid treatment has a significant positive influence on its sorption properties. The maximum adsorption capacity and pollutant elimination efficiency are found to be 43.48 mg/g and 90%, respectively. These results suggest that this low cost agent is an efficient tool to remove organic pollutants especially imidacloprid from wastewater
    • …
    corecore