research

Recommended Thermal Rate Coefficients for the C + H3+_3^+ Reaction and Some Astrochemical Implications

Abstract

We have incorporated our experimentally derived thermal rate coefficients for C + H3+_3^+ forming CH+^+ and CH2+_2^+ into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and use instead a more versatile fitting formula. At a temperature of 10 K and a density of 104^4 cm−3^{-3}, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. Additionally, we find that the relatively small error on our thermal rate coefficients, ∌15%\sim15\%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.Comment: 19 pages, 5 figures. Accepted for publication in Ap

    Similar works