35 research outputs found

    Mechanisms controlling dissolved iron distribution in the North Pacific : a model study

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G03005, doi:10.1029/2010JG001541.Mechanisms controlling the dissolved iron distribution in the North Pacific are investigated using the Biogeochemical Elemental Cycling (BEC) model with a resolution of approximately 1° in latitude and longitude and 60 vertical levels. The model is able to reproduce the general distribution of iron as revealed in available field data: surface concentrations are generally below 0.2 nM; concentrations increase with depth; and values in the lower pycnocline are especially high in the northwestern Pacific and off the coast of California. Sensitivity experiments changing scavenging regimes and external iron sources indicate that lateral transport of sedimentary iron from continental margins into the open ocean causes the high concentrations in these regions. This offshore penetration only appears under a scavenging regime where iron has a relatively long residence time at high concentrations, namely, the order of years. Sedimentary iron is intensively supplied around continental margins, resulting in locally high concentrations; the residence time with respect to scavenging determines the horizontal scale of elevated iron concentrations. Budget analysis for iron reveals the processes by which sedimentary iron is transported to the open ocean. Horizontal mixing transports sedimentary iron from the boundary into alongshore currents, which then carry high iron concentrations into the open ocean in regions where the alongshore currents separate from the coast, most prominently in the northwestern Pacific and off of California.This work was supported by the U.S. National Science Foundation (EF‐0424599)

    The SOLAS air-sea gas exchange experiment (SAGE) 2004

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support

    Simulations of chlorofluorocarbons in and around the Sea of Okhotsk : Effects of tidal mixing and brine rejection on the ventilation

    Get PDF
    Ventilation of waters in and around the Sea of Okhotsk was investigated using simulations of chlorofluorocarbons (CFCs) in the northwestern North Pacific. We used an ocean general circulation model coupled with a sea ice model. The model reproduces the distributions of CFCs similar to observed values and indicates the importance of tidal mixing along the Kuril Islands and brine rejection to ventilation of waters in and around the Sea of Okhotsk. To clarify the role of each process, numerical experiments excluding one of the two processes were carried out. Results show that brine rejection transports CFCs into the intermediate layer as deep as 200-400 m along the path of dense shelf water in the western Sea of Okhotsk, but hardly to other areas and layers. On the other hand, tidal mixing transports CFCs into the intermediate and deeper layers throughout the Sea of Okhotsk. We conclude that the tidal mixing has a greater influence than brine rejection on the ventilation of layers below the winter mixed layer

    134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part One - Surface pathway and vertical distributions

    No full text
    We collected 2 - 10 litre surface seawater samples at more than 300 stations in the North Pacific Ocean and two coastal stations at Tomioka in Fukushima Prefecture and Hasaki in Ibaraki Prefecture. In addition to our own data, we compiled already published data including monitoring data by TEPCO. After July 2012, the activities of 137Cs in surface water at near FNPP1 site were still kept around 1000 Bq m-3 which corresponds about 10 GBq day-1. A zonal speed of FNPP1 derived radiocaesium in surface water at mid latitude in the North Pacific Ocean was 7 km day-1, 8 cm s-1 until March 2012 , however it after March 2012 till August 2014 was ca. 3 km day-1, 3.5 cm s-1. In June 2012 at 29 deg. N, 165 deg. E, clear increase of 134Cs due to STMW formation was observed and maximum 134Cs activity at 151 meters depth, 25.3 sigma theta, was 6.12 +- 0.50 Bq m-3. This increase might be southward transport of Fukushima derived radiocaesium due to STMW formation which was also observed along 149 deg. E. In June 2012 at two stations at 34 deg. N and 39 deg. N along 165 deg. E, 134Cs activity showed maximums at a density around 26.3 which corresponds CMW. 134Cs activity in CMW was highest among the 134Cs activity of surrounding waters including STMW. These observations indicate that CMW formation was most effective pathway to introduce Fukushima derived radiocaesium into ocean interior about one year time scale.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    The POSEIDON-R compartment model for the prediction of transport and fate of radionuclides in the marine environment

    No full text
    A detailed description of the advanced version of compartment model POSEIDON-R for the prediction of transport and fate of radionuclides in the marine environment is given. The equations of transfer of radionuclides in the water and bottom sediment compartments along with the dynamical food chain model are presented together with dose module to assess individual and collective doses to the population due to the regular and accidental releases of radionuclides. The method for the numerical solution of model equations is also presented. The modelling results for the northeast Atlantic shelf seas were compared with measurements of 137Cs. • The three-dimensional compartment model POSEIDON-R describes the transfer of radionuclides and their daughter products in marine environment as a results of regular or accidental releases. This includes any transfer through the water column and sediments. • The model is complemented by a dynamic food chain model for transfer of radioactivity in pelagic and benthic food webs. • The dose module in the model calculates internal and external doses for humans and non-human biota. Method name: Compartment model for the prediction of transport and fate of radionuclides in the marine environment, Keywords: Box modelling, Dynamic food chain model, Radioactivity in the marine environmen

    The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1

    Get PDF
    We investigated the simulated iron budget in ocean surface waters in the 1990s and 2090s using the Community Earth System Model version 1 and the Representative Concentration Pathway 8.5 future CO<sub>2</sub> emission scenario. We assumed that exogenous iron inputs did not change during the whole simulation period; thus, iron budget changes were attributed solely to changes in ocean circulation and mixing in response to projected global warming, and the resulting impacts on marine biogeochemistry. The model simulated the major features of ocean circulation and dissolved iron distribution for the present climate. Detailed iron budget analysis revealed that roughly 70% of the iron supplied to surface waters in high-nutrient, low-chlorophyll (HNLC) regions is contributed by ocean circulation and mixing processes, but the dominant supply mechanism differed by region: upwelling in the eastern equatorial Pacific and vertical mixing in the Southern Ocean. For the 2090s, our model projected an increased iron supply to HNLC waters, even though enhanced stratification was predicted to reduce iron entrainment from deeper waters. This unexpected result is attributed largely to changes in gyre-scale circulations that intensified the advective supply of iron to HNLC waters. The simulated primary and export production in the 2090s decreased globally by 6 and 13%, respectively, whereas in the HNLC regions, they increased by 11 and 6%, respectively. Roughly half of the elevated production could be attributed to the intensified iron supply. The projected ocean circulation and mixing changes are consistent with recent observations of responses to the warming climate and with other Coupled Model Intercomparison Project model projections. We conclude that future ocean circulation has the potential to increase iron supply to HNLC waters and will potentially buffer future reductions in ocean productivity
    corecore