44 research outputs found

    Is breakfast the most important meal of the day?

    Get PDF
    The Bath Breakfast Project is a series of randomised controlled trials exploring the effects of extended morning fasting on energy balance and health. These trials were categorically not designed to answer whether or not breakfast is the most important meal of the day. However, this review will philosophise about the meaning of that question and about what questions we should be asking to better understand the effects of breakfast, before summarising how individual components of energy balance and health respond to breakfast v. fasting in lean and obese adults. Current evidence does not support a clear effect of regularly consuming or skipping breakfast on body mass/composition, metabolic rate or diet-induced thermogenesis. Findings regarding energy intake are variable, although the balance of evidence indicates some degree of compensatory feeding later in the day such that overall energy intake is either unaffected or slightly lower when breakfast is omitted from the diet. However, even if net energy intake is reduced, extended morning fasting may not result in expected weight loss due to compensatory adjustments in physical activity thermogenesis. Specifically, we report that both lean and obese adults expended less energy during the morning when remaining in the fasted state than when consuming a prescribed breakfast. Further research is required to examine whether particular health markers may be responsive to breakfast-induced responses of individual components of energy balance irrespective of their net effect on energy balance and therefore body mass.</p

    A monocarboxylate transporter rescues frontotemporal dementia and Alzheimer's disease models

    Get PDF
    Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias

    Antibody mediated targeting of the FGFR1c isoform increases glucose uptake in white and brown adipose tissue in male mice

    Get PDF
    The increased prevalence of obesity and its cardiometabolic implications demonstrates the imperative to identify novel therapeutic targets able to effect meaningful metabolic changes in this population. Antibody-mediated targeting of fibroblast growth factor receptor 1c isoform (FGFR1c) has been shown to ameliorate hyperglycaemia and protect from diet- and genetically-induced obesity in rodents and non-human primates. However, it is currently unknown which tissue(s) contribute to this glucose lowering effect. Thus, to elucidate this effect we treated euglycaemic mice with H7, a monoclonal antibody which selectively targets the FGFR1c isoform, and employed whole body positron emission computed tomography with a glucose tracer (18F-flurodeoxyglucose). Treatment with H7 increased basal glucose uptake in white and brown adipose tissues (WAT and BAT respectively), the brain and liver, but reduced it in the quadricep muscles. Consequentially, blood glucose was significantly reduced in response to treatment. Under insulin-stimulated conditions, the effects of H7 were maintained in WAT, BAT, liver and muscle. Treatment with H7 decreased triglyceride content and increased adipose triglyceride lipase content in white adipose tissue, whilst increasing activation of acetyl coenzyme A carboxylase, suggesting futile cycling of triglycerides, albeit favouring net hydrolysis. We demonstrated, in vitro, this is a direct effect of treatment in adipose tissue as basal cellular respiration and glucose uptake were increased in response to treatment. Taken together, these data suggest that antibody-mediated targeting of FGFR1c exerts its powerful glucose-lowering efficacy primarily due to increased glucose uptake in adipose tissue

    Is breakfast the most important meal of the day?

    Get PDF
    The Bath Breakfast Project is a series of randomised controlled trials exploring the effects of extended morning fasting on energy balance and health. These trials were categorically not designed to answer whether or not breakfast is the most important meal of the day. However, this review will philosophise about the meaning of that question and about what questions we should be asking to better understand the effects of breakfast, before summarising how individual components of energy balance and health respond to breakfast v. fasting in lean and obese adults. Current evidence does not support a clear effect of regularly consuming or skipping breakfast on body mass/composition, metabolic rate or diet-induced thermogenesis. Findings regarding energy intake are variable, although the balance of evidence indicates some degree of compensatory feeding later in the day such that overall energy intake is either unaffected or slightly lower when breakfast is omitted from the diet. However, even if net energy intake is reduced, extended morning fasting may not result in expected weight loss due to compensatory adjustments in physical activity thermogenesis. Specifically, we report that both lean and obese adults expended less energy during the morning when remaining in the fasted state than when consuming a prescribed breakfast. Further research is required to examine whether particular health markers may be responsive to breakfast-induced responses of individual components of energy balance irrespective of their net effect on energy balance and therefore body mass.</jats:p

    The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults

    Get PDF
    Background: The causal nature of associations between breakfast and health remain unclear in obese individuals. Objective: We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. Design: The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21–60 y with dual-energy X-ray absorptiometry–derived fat mass indexes of 13kg/m2forwomen(n=15)and13 kg/m2 for women (n = 15) and 9 kg/m2 for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast ($700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow up measures of health markers (e.g., hematology/adipose biopsies). Results: Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: 2254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: 2313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). Conclusions: In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were no differences between groups in weight change and most health outcomes, but insulin sensitivity increased with breakfast relative to fasting

    The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults

    Get PDF
    Background: Popular beliefs that breakfast is the most important meal of the day are grounded in cross-sectional observations that link breakfast to health, the causal nature of which remains to be explored under real-life conditions. Objective: The aim was to conduct a randomized controlled trial examining causal links between breakfast habits and all components of energy balance in free-living humans. Design: The Bath Breakfast Project is a randomized controlled trial with repeated-measures at baseline and follow-up in a cohort in southwest England aged 21–60 y with dual-energy X-ray absorptiometry–derived fat mass indexes #11 kg/m2 in women (n = 21) and #7.5 kg/m2 in men (n = 12). Components of energy balance (resting metabolic rate, physical activity thermogenesis, energy intake) and 24-h glycemic responses were measured under free-living conditions with random allocation to daily breakfast ($700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (eg, hematology/biopsies). Results: Contrary to popular belief, there was no metabolic adaptation to breakfast (eg, resting metabolic rate stable within 11 kcal/d), with limited subsequent suppression of appetite (energy intake remained 539 kcal/d greater than after fasting; 95% CI: 157, 920 kcal/d). Rather, physical activity thermogenesis was markedly higher with breakfast than with fasting (442 kcal/d; 95% CI: 34, 851 kcal/d). Body mass and adiposity did not differ between treatments at baseline or follow-up and neither did adipose tissue glucose uptake or systemic indexes of cardiovascular health. Continuously measured glycemia was more variable during the afternoon and evening with fasting than with breakfast by the final week of the intervention (CV: 3.9%; 95% CI: 0.1%, 7.8%). Conclusions: Daily breakfast is causally linked to higher physical activity thermogenesis in lean adults, with greater overall dietary energy intake but no change in resting metabolism. Cardiovascular health indexes were unaffected by either of the treatments, but breakfast maintained more stable afternoon and evening glycemia than did fasting

    A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults

    Get PDF
    Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (−1.91 ± 0.99 kilograms) almost entirely due to fat loss (−1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (−1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (−0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (−0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (−0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health
    corecore