39 research outputs found

    Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Get PDF
    AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used

    Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    No full text
    International audienceAmong the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion (R). The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 mu m Nafion (R) layers was reached for 1O p.m thick carboxylic membranes. Power outputs around 3 mW cm(-2) were measured. We discuss the results regarding the gas barrier effect and the power outputs

    Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(I), corona formation and enzymatic activity

    No full text
    International audienceThe release of Ag(I) from silver nanoparticles (AgNPs) unintentionally spread in the environment is suspected to impair some key biological functions. In comparison with AgNO3, in-depth investigations were carried out into the interactions between citrate-coated AgNPs (20 nm) and two metalloproteins, intracellular metallothionein 1 (MT1) and plasmatic ceruloplasmin (Cp), both involved in metal homeostasis. These were chosen for their physiological relevance and the diversity of their various native metals bound because of thiol groups and/or their structural differences. Transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-vis and circular dichroism (CD) spectroscopies were used to follow the effects of such intricate interactions on AgNP dissolution and proteins in terms of metal exchanges and structural modifications. The isolation of the different populations formed together with on-line quantifications of their metal content were performed by asymmetrical flow field-Flow fractionation (AF4) linked to inductively coupled plasma mass spectrometry (ICP-MS). For the 2 proteins, Ag(I) dissolved from the AgNPs, substituted for the native metal, to different extents and with different types of dynamics for the corona formed: the MT1 rapidly surrounded the AgNPs with transient reticulate corona thus promoting their dissolution associated with the metal substitution, whereas the Cp established a more stable layer around the AgNPs, with a limited substitution of Cu and a decrease in its ferroxidase activity. The accessibility and lability of the metal binding sites inside these proteins and their relative affinities for Ag(I) are discussed, taking into account the structural characteristics of the proteins
    corecore