167 research outputs found

    Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    Full text link
    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.Comment: 16 pages, 5 figure

    An Apparatus to Control and Monitor the Para-D2 Concentration in a Solid Deuterium, Superthermal Source of Ultra-cold Neutrons

    Full text link
    Controlling and measuring the concentration of para-D2 is an essential step toward realizing solid deuterium as an intense ultra-cold neutron (UCN) source. To this end, we implemented an experimental technique to convert para- to ortho-deuterium molecules by flowing D2 gas through a cryogenic cell filled with paramagnetic hydrous ferric oxide granules. This process efficiently reduced the para-D2 concentration from 33.3% to 1.5%. Rotational Raman spectroscopy was applied to measure the residual para-D2 contamination to better than 2 parts in 10^3, and the hydrogen contamination to 1 part in 10^3. We also contrast our optical technique to conventional thermal conductivity measurements of the para-D2 concentration, reporting some of the relevant strengths and weaknesses of our implementation of each technique.Comment: accepted for publication in NIM

    The Effectiveness of Alcohol Screening and Brief Intervention in Emergency Departments: A Multicentre Pragmatic Cluster Randomized Controlled Trial

    Get PDF
    BACKGROUND: Alcohol misuse is common in people attending emergency departments (EDs) and there is some evidence of efficacy of alcohol screening and brief interventions (SBI). This study investigated the effectiveness of SBI approaches of different intensities delivered by ED staff in nine typical EDs in England: the SIPS ED trial. METHODS AND FINDINGS: Pragmatic multicentre cluster randomized controlled trial of SBI for hazardous and harmful drinkers presenting to ED. Nine EDs were randomized to three conditions: a patient information leaflet (PIL), 5 minutes of brief advice (BA), and referral to an alcohol health worker who provided 20 minutes of brief lifestyle counseling (BLC). The primary outcome measure was the Alcohol Use Disorders Identification Test (AUDIT) status at 6 months. Of 5899 patients aged 18 or more presenting to EDs, 3737 (63·3%) were eligible to participate and 1497 (40·1%) screened positive for hazardous or harmful drinking, of whom 1204 (80·4%) gave consent to participate in the trial. Follow up rates were 72% (n?=?863) at six, and 67% (n?=?810) at 12 months. There was no evidence of any differences between intervention conditions for AUDIT status or any other outcome measures at months 6 or 12 in an intention to treat analysis. At month 6, compared to the PIL group, the odds ratio of being AUDIT negative for brief advice was 1·103 (95% CI 0·328 to 3·715). The odds ratio comparing BLC to PIL was 1·247 (95% CI 0·315 to 4·939). A per protocol analysis confirmed these findings. CONCLUSIONS: SBI is difficult to implement in typical EDs. The results do not support widespread implementation of alcohol SBI in ED beyond screening followed by simple clinical feedback and alcohol information, which is likely to be easier and less expensive to implement than more complex interventions

    Robust detection of clinically relevant features in single-cell RNA profiles of patient-matched fresh and formalin-fixed paraffin-embedded (FFPE) lung cancer tissue

    Get PDF
    PURPOSE: Single-cell transcriptional profiling reveals cell heterogeneity and clinically relevant traits in intra-operatively collected patient-derived tissue. So far, single-cell studies have been constrained by the requirement for prospectively collected fresh or cryopreserved tissue. This limitation might be overcome by recent technical developments enabling single-cell analysis of FFPE tissue. METHODS: We benchmark single-cell profiles from patient-matched fresh, cryopreserved and archival FFPE cancer tissue. RESULTS: We find that fresh tissue and FFPE routine blocks can be employed for the robust detection of clinically relevant traits on the single-cell level. Specifically, single-cell maps of fresh patient tissues and corresponding FFPE tissue blocks could be integrated into common low-dimensional representations, and cell subtype clusters showed highly correlated transcriptional strengths of signaling pathway, hallmark, and clinically useful signatures, although expression of single genes varied due to technological differences. FFPE tissue blocks revealed higher cell diversity compared to fresh tissue. In contrast, single-cell profiling of cryopreserved tissue was prone to artifacts in the clinical setting. CONCLUSION: Our analysis highlights the potential of single-cell profiling in the analysis of retrospectively and prospectively collected archival pathology cohorts and increases the applicability in translational research

    Reporter-based screening identifies RAS-RAF mutations as drivers of resistance to active-state RAS inhibition in colorectal cancer

    Get PDF
    Therapy-induced acquired resistance limits the clinical effectiveness of mutation-specific RAS inhibitors in colorectal cancer. It is unknown whether broad-spectrum active-state RAS inhibitors meet similar limitations. Here, we identify and categorize mechanisms of resistance to the broad-spectrum active-state RAS inhibitor RMC-7977 in colorectal cancer cell lines. We found that KRAS-mutant colorectal cancer cell lines are universally sensitive to RMC-7977, inhibiting the RAS-RAF-MEK-ERK axis, halting proliferation and in some cases inducing apoptosis. To monitor KRAS downstream effector pathway activity, we developed a compartment-specific dual-color ERK activity reporter. RMC-7977 treatment reduced reporter activity. However, long-term dose escalation with RMC-7977 revealed multiple patterns of reporter reactivation in emerging resistant cell populations that correlated with phosphorylation states of compartment-specific ERK targets. Cells sorted for high, low, or cytoplasmic reporter activity exhibited distinct patterns of genomic mutations, phospho-protein, and transcriptional activities. Notably, all resistant subpopulations showed dynamic ERK regulation in the presence of the RAS inhibitor, unlike the parental sensitive cell lines. High levels of RAS downstream activities were observed in cells characterized by a KRAS Y71H resistance mutation. In contrast, RAS inhibitor-resistant populations with low, or cytoplasmic ERK reporter reactivation displayed different genetic alterations, among them RAF1 S257L and S259P mutations. Colorectal cancer cells resistant to RMC-7977 and harboring the RAF1 mutation specifically exhibited synergistic sensitivity to concurrent RAS and RAF inhibition. Our findings endorse reporter-assisted screening together with single-cell analyses as a powerful approach for dissecting the complex landscape of therapy resistance. The strategy offers opportunities to develop clinically relevant combinatorial treatments to counteract emergence of resistant cancer cells

    Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos

    Get PDF
    DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology
    corecore