19 research outputs found

    Feather Vibration as a Stimulus for Sensing Incipient Separation in Falcon Diving Flight

    No full text
    Abstract Based on our preceding studies on the aerodynamics of a falcoperegrinus in diving flight along a vertical dam it is known that even when the body shape of the bird is rather streamlined in V-shape some feathers tips may elevate in certain regions of the body. These regions were identified in wind tunnel tests for typical diving flight conditions as regions of locally separated flow. A life-size model in V-shape of a falcoperegrinus with artificial feathers fixed along the body was studied in a wind tunnel to focus on the fluid-structure interaction of feathers located in this sector. The distal ends of the feathers show flow-induced vibrations at typical flight conditions which grow linear in amplitude with increasing angle of incidence until incipient separation. In light of the proven existence of vibration-sensitive mechanoreceptors in the follicles of secondary feathers in birds it is hypothesized that this linear amplitude response offers the bird to sense the angle of incidence during the diving flight using the vibration magnitude as sensory stimulus. Thus the bird in streamlined shape has still a good measure to control its attitude to be in the narrow window of safe angle of incidence. This might have implications also for other birds or technical applications of airfoil sensors regarding incipient separation detection

    A computational study of asymmetric glottal jet deflection during phonation

    No full text
    Two-dimensional numerical simulations are used to explore the mechanism for asymmetric deflection of the glottal jet during phonation. The model employs the full Navier–Stokes equations for the flow but a simple laryngeal geometry and vocal-fold motion. The study focuses on the effect of Reynolds number and glottal opening angle with a particular emphasis on examining the importance of the so-called “Coanda effect” in jet deflection. The study indicates that the glottal opening angle has no substantial effect on glottal jet deflection. Deflection in the glottal jet is always preceded by large-scale asymmetry in the downstream portion of the glottal jet. A detailed analysis of the velocity and vorticity fields shows that these downstream asymmetric vortex structures induce a flow at the glottal exit which is the primary driver for glottal jet deflection
    corecore