63 research outputs found

    Shark movement strategies influence poaching risk and can guide enforcement decisions in a large, remote Marine Protected Area

    Get PDF
    1. Large, remote marine protected areas (MPAs) containing both reef and pelagic habitats, have been shown to offer considerable refuge to populations of reef-associated sharks. Many large MPAs are, however, impacted by illegal fishing activity conducted by unlicensed vessels. While enforcement of these reserves is often expensive, it would likely benefit from the integration of ecological data on the mobile animals they are designed to protect. Consequently, shark populations in some protected areas continue to decline, as they remain a prime target for illegal fishers. 2. To understand shark movements and their vulnerability to illegal fishing, three years of acoustic tracking data, from 101 reef-associated sharks, were analysed as movement networks to explore the predictability of movement patterns and identify key movement corridors within the British Indian Ocean Territory (BIOT) MPA. We examined how space use and connectivity overlap with spatially-explicit risk of illegal fishing, through data obtained from the management consultancy enforcing the MPA. 3. Using individual-based models, the movement networks of two sympatric shark species were efficiently predicted with distance-decay functions (>95% movements accurately predicted). Model outliers were used to highlight the locations with unexpectedly high movement rates where MPA enforcement patrols might most efficiently mitigate predator removal. 4. Activity space estimates and network metrics illustrate that silvertip sharks were more dynamic, less resident and link larger components of the MPA than grey reef sharks. However, we show that this behaviour potentially enhances their exposure to illegal fishing activity. 5. Synthesis and applications. Marine protected area (MPA) enforcement strategies are often limited by resources. The British Indian Ocean Territory MPA, one of the world’s largest ‘no take’ MPAs, has a single patrol vessel to enforce 640,000 km2 of open ocean, atoll and reef ecosystems. We argue that to optimise the patrol vessel search strategy and thus enhance their protective capacity, ecological data on the space use and movements of desirable species, such as large-bodied reef predators, must be incorporated into management plans. Here, we use electronic tracking data to evaluate how shark movement dynamics influence species mortality trajectories in exploited reef ecosystems. In doing so we discuss how network analyses of such data might be applied for protected area enforcement

    The effect of deep oceanic flushing on water properties and ecosystem functioning within atolls in the British Indian Ocean Territory

    Get PDF
    Within atolls, deep water channels exert significant control over local hydrodynamic conditions; which are important drivers of planktonic distributions. To examine planktonic responses to oceanography, this study tested the effect of proximity and exposure to deep oceanic flushing through these channels on water properties and planktonic assemblages across four atolls (Diego Garcia, Salomon, Egmont, and Peros Banhos) in the British Indian Ocean Territory Marine Reserve. As this is the largest, most isolated and sparsely inhabited atoll complex in the world, it provides the perfect experimental conditions to test the effect of oceanic flushing without confounding factors related to anthropogenic development. Results are discussed in the context of ecosystem functioning. A total of 30 planktonic taxa and 19,539 individuals were identified and counted. Abundance was significantly different between atolls and significantly greater within inner regions in all atolls except southeast Egmont. Planktonic assemblage composition significantly differed between atolls and between inner and outer stations; exhibiting higher similarity between outer stations. Within outer stations of Diego Garcia, Peros Banhos, and Egmont, evidence suggesting oceanic flushing of cold, saline, and dense water was observed, however a longer time series is required to conclusively demonstrate tidal forcing of this water through deep water channels. Planktonic variability between inner and outer atoll regions demonstrates that broad comparisons between oceanic and lagoon regions fail to capture the complex spatial dynamics and hydrodynamic interactions within atolls. Better comprehension of these distributional patterns is imperative to monitor ecosystem health and functioning, particularly due to increasing global anthropogenic pressures related to climate change. The extensive coral bleaching described in this paper highlights this concern

    Coral bleaching impacts from back-to-back 2015–2016 thermal anomalies in the remote central Indian Ocean

    Get PDF
    Studying scleractinian coral bleaching and recovery dynamics in remote, isolated reef systems offers an opportunity to examine impacts of global reef stressors in the absence of local human threats. Reefs in the Chagos Archipelago, central Indian Ocean, suffered severe bleaching and mortality in 2015 following a 7.5 maximum degree heating weeks (DHWs) thermal anomaly, causing a 60% coral cover decrease from 30% cover in 2012 to 12% in April 2016. Mortality was taxon specific, with Porites becoming the dominant coral genus post-bleaching because of an 86% decline in Acropora from 14 to 2% cover. Spatial heterogeneity in Acropora mortality across the Archipelago was significantly negatively correlated with variation in DHWs and with chlorophyll-a concentrations. In 2016, a 17.6 maximum DHWs thermal anomaly caused further damage, with 68% of remaining corals bleaching in May 2016, and coral cover further declining by 29% at Peros Banhos Atoll (northern Chagos Archipelago) from 14% in March 2016 to 10% in April 2017. We therefore document back-to-back coral bleaching and mortality events for two successive years in the remote central Indian Ocean. Our results indicate lower coral mortality in 2016 than 2015 despite a more severe thermal anomaly event in 2016. This could be caused by increased thermal resistance and resilience within corals surviving the 2015 thermal anomaly; however, high bleaching prevalence in 2016 suggests there remained a high sensitivity to bleaching. Similar coral mortality and community change were seen in the Chagos Archipelago following the 1998 global bleaching event, from which recovery took 10 yr. This relatively rapid recovery suggests high reef resiliency and indicates that the Archipelago’s lack of local disturbances will increase the probability that the reefs will again recover over time. However, as the return time between thermal anomaly events becomes shorter, this ability to recover will become increasingly compromised

    Estimating space use of mobile fishes in a large marine protected area with methodological considerations in acoustic array design

    Get PDF
    Marine protected areas (MPAs) have become an increasingly important tool to protect and conserve marine resources. However, there remains much debate about how effective MPAs are, especially in terms of their ability to protect mobile marine species such as teleost and chondrichthyan fishes. We used satellite and acoustic tags to assess the ability of a large oceanic MPA, the British Indian Ocean Territory MPA (BIOT MPA), to protect seven species of pelagic and reef-associated teleost and chondrichthyan fishes. We satellite-tagged 26 animals from six species (Blue Marlin, Reef Mantas, Sailfish, Silky Sharks, Silvertip Sharks, and Yellowfin Tuna), producing 2,735 days of movement data. We also acoustically tagged 121 sharks from two species (Grey Reef and Silvertip Sharks), which were monitored for up to 40 months across a large acoustic receiver array spanning the MPA. We found that the activity spaces of all satellite-tagged animals, including pelagic species, were much smaller than the area of the BIOT MPA, even taking into account errors associated with position estimates. Estimates of space use of acoustically tagged sharks, based on dynamic Brownian Bridge Movement Models (dBBMM), were also much smaller than the size of the MPA. However, we found important limitations when using dBBMM and demonstrate its sensitivity to both study duration and array design. We found that Grey Reef Sharks should be monitored for at least 1 year and Silvertip Sharks for 2 years before their activity space can be effectively estimated. We also demonstrate the potentially important role that intraspecific variability in spatial ecology may play in influencing the ability of MPAs to effectively protect populations of mobile species. Overall, our results suggest that, with effective enforcement, MPAs on the scale of the BIOT MPA potentially offer protection to a variety of pelagic and reef species with a range of spatial ecologies. We suggest that animals need to be tagged across seasons, years, and ontogenetic stages, in order to fully characterize their spatial ecology, which is fundamental to developing and implementing effective MPAs to conserve the full life history of target species

    \u3cem\u3eStreptococcus agalactiae \u3c/em\u3eStrains with Chromosomal Deletions Evade Detection with Molecular Methods

    Get PDF
    Surveillance of circulating microbial populations is critical for monitoring the performance of a molecular diagnostic test. In this study, we characterized 31 isolates of Streptococcus agalactiae (group B Streptococcus [GBS]) from several geographic locations in the United States and Ireland that contain deletions in or adjacent to the region of the chromosome that encodes the hemolysin gene cfb, the region targeted by the Xpert GBS and GBS LB assays. PCR-negative, culture-positive isolates were recognized during verification studies of the Xpert GBS assay in 12 laboratories between 2012 and 2018. Whole-genome sequencing of 15 GBS isolates from 11 laboratories revealed four unique deletions of chromosomal DNA ranging from 181 bp to 49 kb. Prospective surveillance studies demonstrated that the prevalence of GBS isolates containing deletions in the convenience sample wa

    Range expansion and the origin of USA300 north american epidemic methicillin-resistant Staphylococcus aureus

    Get PDF
    The USA300 North American epidemic (USA300-NAE) clone of methicillin-resistant Staphylococcus aureus has caused a wave of severe skin and soft tissue infections in the United States since it emerged in the early 2000s, but its geographic origin is obscure. Here we use the population genomic signatures expected from the serial founder effects of a geographic range expansion to infer the origin of USA300-NAE and identify polymorphisms associated with its spread. Genome sequences from 357 isolates from 22 U.S. states and territories and seven other countries are compared. We observe two significant signatures of range expansion, including decreases in genetic diversity and increases in derived allele frequency with geographic distance from the Pennsylvania region. These signatures account for approximately half of the core nucleotide variation of this clone, occur genome wide, and are robust to heterogeneity in temporal sampling of isolates, human population density, and recombination detection methods. The potential for positive selection of a gyrA fluoroquinolone resistance allele and several intergenic regions, along with a 2.4 times higher recombination rate in a resistant subclade, is noted. These results are the first to show a pattern of genetic variation that is consistent with a range expansion of an epidemic bacterial clone, and they highlight a rarely considered but potentially common mechanism by which genetic drift may profoundly influence bacterial genetic variation. IMPORTANCE The process of geographic spread of an origin population by a series of smaller populations can result in distinctive patterns of genetic variation. We detect these patterns for the first time with an epidemic bacterial clone and use them to uncover the clone’s geographic origin and variants associated with its spread. We study the USA300 clone of methicillin-resistant Staphylococcus aureus, which was first noticed in the early 2000s and subsequently became the leading cause of skin and soft tissue infections in the United States. The eastern United States is the most likely origin of epidemic USA300. Relatively few variants, which include an antibiotic resistance mutation, have persisted during this clone’s spread. Our study suggests that an early chapter in the genetic history of this epidemic bacterial clone was greatly influenced by random subsampling of isolates during the clone’s geographic spread

    Clostridium difficile infection among hospitalized HIV-infected individuals: epidemiology and risk factors: results from a case-control study (2002-2013).

    Get PDF
    BACKGROUND: HIV infection is a risk factor for Clostridium difficile infection (CDI) yet the immune deficiency predisposing to CDI is not well understood, despite an increasing incidence of CDI among such individuals. We aimed to estimate the incidence and to evaluate the risk factors of CDI among an HIV cohort in Italy. METHODS: We conducted a retrospective case-control (1:2) study. Clinical records of HIV inpatients admitted to the National Institute for Infectious Disease "L. Spallanzani", Rome, were reviewed (2002-2013). CASES: HIV inpatients with HO-HCFA CDI, and controls: HIV inpatients without CDI, were matched by gender and age. Logistic regression was used to identify risk factors associated with CDI. RESULTS: We found 79 CDI episodes (5.1 per 1000 HIV hospital admissions, 3.4 per 10000 HIV patient-days). The mean age of cases was 46 years. At univariate analysis factors associated with CDI included: antimycobacterial drug exposure, treatment for Pneumocystis pneumonia, acid suppressant exposure, previous hospitalization, antibiotic exposure, low CD4 cell count, high Charlson score, low creatinine, low albumin and low gammaglobulin level. Using multivariate analysis, lower gammaglobulin level and low serum albumin at admission were independently associated with CDI among HIV-infected patients. CONCLUSIONS: Low gammaglobulin and low albumin levels at admission are associated with an increased risk of developing CDI. A deficiency in humoral immunity appears to play a major role in the development of CDI. The potential protective role of albumin warrants further investigation

    Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia

    Get PDF
    In Colombia, the epidemiology and circulating genotypes of Clostridium difficile have not yet been described. Therefore, we molecularly characterized clinical isolates of C.difficile from patients with suspicion of C.difficile infection (CDI) in three tertiary care hospitals. C.difficile was isolated from stool samples by culture, the presence of A/B toxins were detected by enzyme immunoassay, cytotoxicity was tested by cell culture and the antimicrobial susceptibility determined. After DNA extraction, tcdA, tcdB and binary toxin (CDTa/CDTb) genes were detected by PCR, and PCR-ribotyping performed. From a total of 913 stool samples collected during 2013–2014, 775 were included in the study. The frequency of A/B toxins-positive samples was 9.7% (75/775). A total of 143 isolates of C.difficile were recovered from culture, 110 (76.9%) produced cytotoxic effect in cell culture, 100 (69.9%) were tcdA+/tcdB+, 11 (7.7%) tcdA-/tcdB+, 32 (22.4%) tcdA-/tcdB- and 25 (17.5%) CDTa+/CDTb+. From 37 ribotypes identified, ribotypes 591 (20%), 106 (9%) and 002 (7.9%) were the most prevalent; only one isolate corresponded to ribotype 027, four to ribotype 078 and four were new ribotypes (794,795, 804,805). All isolates were susceptible to vancomycin and metronidazole, while 85% and 7.7% were resistant to clindamycin and moxifloxacin, respectively. By multivariate analysis, significant risk factors associated to CDI were, staying in orthopedic service, exposure to third-generation cephalosporins and staying in an ICU before CDI symptoms; moreover, steroids showed to be a protector factor. These results revealed new C. difficile ribotypes and a high diversity profile circulating in Colombia different from those reported in America and European countries

    Threats of illegal, unregulated, and unreported fishing to biodiversity and food security in the Republic of the Congo

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordIllegal, unregulated, and unreported (IUU) fishing poses a major threat to effective management of marine resources, impacting biodiversity and communities dependent on these coastal resources. Spatio-temporal patterns of industrial fisheries in developing countries are often poorly understood, with global efforts describing spatial patterns of fishing vessel activity currently based on automatic identification system (AIS) data. However, AIS is often not a legal requirement on fishing vessels, likely resulting in underestimates of the scale and distribution of legal and illegal fishing activity, which could have significant ramifications for targeted enforcement efforts and the management of fisheries resources. To help address this knowledge gap, we analysed three years of vessel monitoring system (VMS) data in partnership with the national fisheries department in the Republic of the Congo to describe the behaviour of national and distant water industrial fleets operating in these waters. We reveal the spatial footprint of the industrial fisheries fleet encompasses over one quarter of the Exclusive Economic Zone (EEZ), with an average of 73% of fishing activity taking place on the continental shelf (waters shallower than 200 m). In addition, our findings highlight that VMS is not acting as a deterrent or being effectively used as a pro-active management tool, with as much as 33% (13% on average) of fishing effort occurring within prohibited areas set aside to protect biodiversity, including artisanal fisheries resources; with the distant water fleet (DWF) responsible for as much as 84% of this illegal activity. Given the growth in industrial and distant water fleets across the region, as well as low levels of management and enforcement, these findings highlight that there is an urgent need for the global community to help strengthen regional and national capacity to analyse national scale datasets if efforts to combat IUU fishing are to be effective.Darwin InitiativeWaterloo FoundationWAITT Foundatio

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    • 

    corecore