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four atolls (Diego Garcia, Salomon, Egmont and Peros Banhos) in the British Indian Ocean 22 

Territory Marine Reserve. As this is the largest, most isolated and sparsely inhabited atoll 23 

complex in the world, it provides the perfect experimental conditions to test the effect of 24 

oceanic flushing without confounding factors related to anthropogenic development. Results 25 

are discussed in the context of ecosystem functioning. A total of 30 planktonic taxa and 19,539 26 

individuals were identified and counted. Abundance was significantly different between atolls 27 

and significantly greater within inner regions in all atolls except southeast Egmont. Planktonic 28 

assemblage composition significantly differed between atolls and between inner and outer 29 

stations; exhibiting higher similarity between outer stations. Within outer stations of Diego 30 

Garcia, Peros Banhos and Egmont, evidence suggesting oceanic flushing of cold, saline and 31 

dense water was observed, however a longer time series is required to conclusively demonstrate 32 

tidal forcing of this water through deep water channels. Planktonic variability between inner 33 

and outer atoll regions demonstrates that broad comparisons between oceanic and lagoon 34 

regions fail to capture the complex spatial dynamics and hydrodynamic interactions within 35 

atolls. Better comprehension of these distributional patterns is imperative to monitor ecosystem 36 

health and functioning, particularly due to increasing global anthropogenic pressures related to 37 

climate change. The extensive coral bleaching described in this paper highlights this concern.  38 

Keywords: Plankton, Chagos Archipelago, Indian Ocean, Atoll, Marine Protected Area, 39 

ecosystem functioning, exposure, oceanography, coral bleaching.  40 

 41 

1. Introduction 42 

 43 

Coral atolls are often characterized by a rich biodiversity of fishes, corals and coralline algae, 44 

highly mobile consumers such as manta rays (McCauley et al., 2014) and sea turtles 45 
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(Mendonca, 1982), and apex predators (Sheppard et al., 2012) such as reef sharks (Tickler et 46 

al., 2017). The greater productivity within atolls relative to the surrounding oligotrophic 47 

tropical waters (Rayner and Drew, 1984;Letessier et al., 2016) likely supports such diverse 48 

assemblages. As such they have been claimed to be ‘oases of life in an oceanic desert’ (Odum, 49 

1955;Johannes and Gerber, 1974).  50 

Such atoll productivity may be maintained by high nutrient recycling, through microbial food 51 

webs and coral symbionts (Hatcher and Frith, 1985;Falter et al., 2004), and geomorphology. 52 

Geomorphological features such as deep water channels are thought to affect productivity 53 

within atolls, by facilitating oceanic exchange between lagoon and oceanic waters; controlled 54 

by the tidal forcing (Pugh and Rayner, 1981;Kench, 1998;Chevalier et al., 2017;Green et al., 55 

2018). Without this oceanic exchange, temperature, salinity and oxygen may reach extreme, 56 

uninhabitable levels (Pugh and Rayner, 1981). Thus, the nutrient enrichment (Thompson and 57 

Golding, 1981;Thomson and Wolanski, 1984;Wolanski et al., 1988) and environmental 58 

stability exerted by these deep water channels through water renewal likely plays a key role in 59 

ecosystem functioning.  60 

Investigating the role of atoll hydrodynamics on natural ecosystem functioning is almost 61 

always confounded by anthropogenic influences such as nutrient input through urban run-off, 62 

overfishing, sedimentation, coastal development, pollution and tourism (Knowlton and 63 

Jackson, 2008;Riegl et al., 2012;Firth et al., 2016). However, atolls within the Chagos 64 

Archipelago, Indian Ocean, represent a unique opportunity to investigate these relationships in 65 

the absence of direct human pressures. The Chagos Archipelago is a large area of atolls and 66 

submerged banks within the British Indian Ocean Territory (BIOT), situated in the southern 67 

region of the Lakshadweep-Maldives-Chagos ridge (Sheppard et al., 2012). Established within 68 

BIOT is a designated no-take marine reserve of approximately 550,000 km². The marine 69 

reserve includes all of the atolls and waters of the BIOT Exclusive Economic Zone (EEZ), with 70 

In review



4 
 

the exception of the atoll of Diego Garcia (Sheppard et al., 2012). There are no human 71 

inhabitants within the archipelago, save for those associated with the military base on Diego 72 

Garcia.  As such, the BIOT marine reserve is the largest, most isolated uninhabited atoll 73 

complex in the world. 74 

Plankton are extremely important to the functioning of atoll lagoon systems.  They are key to 75 

conserving biodiversity and productivity (Bozec et al., 2004;Alldredge and King, 2009) as they 76 

play a vital role in food webs, linking primary producers to multiple trophic levels e.g. reef 77 

fishes, manta rays and reef sharks (Niquil, 1998 ;Alldredge and King, 2009;Tickler et al., 78 

2017), participate in biogeochemical cycles (Roman, 1990;Legendre and Le Fèvre, 1991) and 79 

their abundance is known to influence pelagic and benthic faunal recruitment (Hughes, 2000 80 

;Grorud-Colvert, 2009). Given their importance to ecosystem functioning (Hébert et al., 2017), 81 

investigating the spatial distribution, abundance and diversity of plankton is vital for the 82 

monitoring of marine biodiversity and ecosystem health. 83 

Within planktonic assemblages, zooplankton comprise taxa which reside in the plankton for 84 

early larval stages (meroplankton) and taxa which are planktonic for their entire life cycle 85 

(holoplankton) (Kennish, 2001). There are also small, often benthic animals translocated into 86 

the water column by hydrographic and behavioural processes (tychoplankton) (Kennish, 2001). 87 

Typically the abundance of zooplankton is greater within lagoons, compared to adjacent 88 

oceanic areas (Gerber, 1981;Pagano et al., 2012) and is dominated by meroplankton (Gerber, 89 

1981;Achuthankutty et al., 1989;Pagano et al., 2017). This pattern highlights the importance 90 

of atolls as ‘nursery grounds’ for the larval planktonic stages of tropical invertebrates and 91 

fishes.  92 

A number of oceanographic processes are known to influence the distribution and community 93 

structure of zooplankton throughout the open ocean such as ocean fronts, mesoscale eddies and 94 
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upwelling (Kiørboe, 1997;Huggett, 2014;Lamont et al., 2014). Within lagoons, however, 95 

hydrodynamic drivers including tidal flushing and wind-driven circulation, and the associated 96 

variations in salinity and temperature, are highly influential (Dumas et al., 2012;Dupuy et al., 97 

2016). Additionally, particulate organic matter and chlorophyll (Le Borgne et al., 98 

1989;Carassou et al., 2010), increased terrestrial runoff and nutrient input (Carrillo Baltodano 99 

and Morales Ramírez, 2016;Dupuy et al., 2016) and zooplankton swimming behaviour within 100 

tidal-currents may also affect the retention/aggregation of zooplankton in lagoons (Genin et al., 101 

2005). Cold oceanic water spilling into atolls from deep channels may underpin zooplankton 102 

spatial and temporal distribution within the lagoons.  103 

 104 

This study compared zooplankton metrics (number of taxa, abundance, and assemblage 105 

composition) between inner more sheltered regions with outer more exposed regions. To 106 

examine the hypothesis that deep oceanic water is flushed into the atoll, differences in water 107 

properties were compared between inner and outer regions. Four atolls in the BIOT were 108 

surveyed; Salomon, Egmont and Peros Banhos in the marine reserve, and Diego Garcia.   109 

 110 

2. Materials and methods 111 

 112 

To enable comparison of these data between atolls and to other comparable locations, site 113 

characterisation was first undertaken. Intertidal and subtidal samples were taken using cores 114 

and towed video respectively (Figure 1). Plankton samples and CTD vertical profiles were 115 

collected concurrently following a transect, to capture the different regions of exposure in four 116 

coral reef atolls in the British Indian Ocean Territory (Diego Garcia, Salomon, Egmont and 117 
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Peros Banhos), in the central Indian Ocean between 04°54' to 07°39'S and 70°14' to 72°37'E 118 

(Tickler et al., 2017) (Figure 1). Each transect started in the most sheltered part of the atoll and 119 

ended at the exposed lagoon entrance (weather depending). Sampling took place from a 4 m 120 

skiff during daylight hours between 11th- 22nd May 2016. Permission was granted to undertake 121 

the work by the United Kingdom Foreign and Commonwealth Office.  122 

 123 

2.1 Site characterisation 124 

 125 

Within each atoll, 3-5 intertidal sites and 1-5 subtidal sites were haphazardly selected to gain 126 

optimal coverage of each atoll, time allowing (Figure 1). To assess the intertidal sediment size, 127 

organic content and infauna, 3 replicates were sampled at the waterline of each site. Each 128 

replicate gathered a sediment sample using a small plastic corer (50 mm L x 50 mm D) to 129 

assess particle size and organic content, and an infauna sample using a bespoke stainless steel 130 

corer (250 mm L, 100 mm D) (Supplementary Figure 1) (Sheehan et al., 2015). Sediment 131 

processing was conducted using a standard approach as described in (Sheehan et al., 2010). 132 

Sediments from the large corer were sieved over a 1 mm mesh sieve. The samples did not 133 

contain any living fauna, bar 5 individuals of a featureless species of polychaete, hence no 134 

infauna data are presented. To assess habitat type and coral health, 3 x video transects of the 135 

subtidal sea bed at each site were recorded. Transects were recorded for 5 minutes and towed 136 

at <0.2 knots using a bespoke, non-contact, towed array, fitted with a Go Pro 4 silver and laser 137 

scaling (Supplementary Figure 1) for 3 x 5 minute tows at each subtidal site (Figure 1). To 138 

analyse sub-tidal video transect recordings, each transect was split into frames at 3 second 139 

intervals. Poor quality and overlapping frames were removed, leaving high quality frames for 140 

analysis (Sheehan et al., 2013). The dominant habitat type and its bleaching status for each 141 

frame was recorded (Corals: Bommies, Rubble, Branching and Massive; Sediment: Sand or 142 
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Mounds in sand). In addition, any live corals (hard or soft), encrusting coralline algal/hydroid 143 

turf that colonises dead coral, or reef fish were noted. Percent occurrence of dominant habitat 144 

and percent presence of the other variables were calculated for each replicate tow. 145 

  146 

2.2 Plankton & Water property profiles  147 

 148 

Along each transect, samples were taken at discrete stations separated 1 nautical mile apart for 149 

the larger atolls (Diego Garcia and Peros Banhos) and 0.5 nautical miles apart for the smaller 150 

atolls (Egmont and Salomon) (Figure 1). The position of each station was logged using a GPS 151 

Garmin Etrex 20x. At each station, a seabed-surface vertical sample was obtained by a plankton 152 

net (250 mm frame with a 250 µm mesh) and a Maestro CTD (RBR Maestro conductivity-153 

temperature-depth sensor equipped with a Rinko dissolved oxygen sensor and a Seapoint 154 

Chlorophyll-α fluorometer, sampling at 12 Hz) (Supplementary Figure 1). Salinity data are 155 

henceforth expressed in practical salinity units (PSU). Each transect was completed between 156 

30 and 70 minutes, minimising the influence of non-steady dynamics, likely attributable to 157 

tides, on the results. From the density values derived from the Maestro CTD, the Brunt-Vaisala 158 

frequency, N; 159 

 160 

N = √−
𝑔

ρ𝑜

𝜕𝜌(z)

𝜕z
 161 

 162 
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where g=9.81 m s-2 is the acceleration due to gravity, o is a reference density and z is the 163 

vertical distance, was calculated for 1 metre vertical increments. Data were subsequently bin-164 

averaged at 1 m vertical resolution in post-processing.  165 

 166 

In addition to the vertical profiles, Valeport mini-CTDs were deployed at a depth of 3 m and 167 

approximately 2 m above the bed at the entrances to each lagoon, except Salomon in which the 168 

CTD malfunctioned (Figure 1).  The mini-CTDs sampled at 1 Hz and were deployed at each 169 

site for a complete semidiurnal tidal cycle, with the intention of observing temporal changes in 170 

the water properties entering and leaving the lagoon. The deployments were coincident with 171 

the Maestro CTD vertical profile transects, enabling an assessment to be made of the temporal 172 

variability that may influence the interpretation of the spatial variability depicted by the 173 

Maestro CTD data. Due to entrapment of particles in the conductivity cell of the mini CTDs, 174 

the salinity data were unreliable, therefore only the temperature data from these instruments 175 

could be reliably used to indicate the susceptibility of a given site to cold water flushing from 176 

the open ocean. 177 

Plankton samples were stored in 100% ethanol and later filtered through a 200 µm mesh and 178 

identified using light microscopy. Taxon were identified as described by (Conway et al., 2003) 179 

to the highest level of taxonomic resolution as was feasible. For copepod abundance 180 

specifically, individuals were distinguished first by order and then a size fraction (small = < 2 181 

mm, large= >2 mm). Identification was then conducted within these fractions.  182 

 183 

Identifications were made using stereo microscopes: Leica MZ6 (magnification x9.45-x60); 184 

Zeiss Discovery. V8 (magnification x6.3-x120) and a bespoke compound microscope 185 

In review



9 
 

(magnification x62.5-x625).  For each microscope, size distinctions were made using an 186 

eyepiece graticule calibrated to a stage micrometer. Identification and enumeration was 187 

completed on 39 samples. Samples were counted in their entirety, excluding a singular occasion 188 

in which the abundance of gastropod larvae surpassed 5,500. In this sample (southwest Egmont 189 

Station 2, Figure 1), the count for this taxon was based on extrapolation of abundance within 190 

half the sample.  191 

 192 

 193 

 194 

2.3 Data analysis 195 

 196 

 197 

2.3.1 Site characterisation 198 

 199 

Site characterisation data were tabulated but not analysed as there were no a priori hypotheses 200 

to test.  201 

 202 

2.3.2 Plankton & Water property profiles 203 

 204 

Transects comprised evenly dispersed stations and ran from the most sheltered part of each 205 

atoll towards the primary channel where it was most exposed. To statistically compare plankton 206 

assemblages between inner sheltered and outer exposed regions, stations in the first half of 207 

each transect were considered “inner” and the remaining stations considered “outer” unless 208 

water property data provided a more informed division between categories. (Figure 2, Figure 209 

3, Supplementary Figure 2-5). It was anticipated that deep oceanic flushing would be 210 

characterised by vertical isopycnals indicating lateral gradients in water properties as oceanic 211 
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water entered the lagoon. Inner unflushed lagoons instead would demonstrate a degree of 212 

vertical stratification, as the absence of flushing by oceanic water enables persistent diurnal 213 

warming to enhance the near surface thermocline. As these data were limited to single time 214 

points, flushing extent could be underestimated. To further extrapolate these data, this study 215 

would need to be replicated to account for tidal, daily, seasonal and annual variability.   216 

 217 

Permutational multivariate analysis of variance in Primer 7 (Anderson, 2001;Clarke and 218 

Warwick, 2001) was used to test for differences between Atolls (Fixed, 5 levels: Diego Garcia, 219 

Salomon, southwest Egmont, southeast Egmont and Peros Banhos) and Exposure (Fixed, 2 220 

levels: Inner and Outer) using two univariate metrics (number of taxa and abundance) and one 221 

multivariate metric (assemblage composition). All data were fourth root transformed and 222 

univariate data were based on Euclidean distance, while multivariate data were based on the 223 

Bray–Curtis similarity index (Bray and Curtis, 1957). Non-metric multi-dimensional Scaling 224 

(nMDS) was used to visualise differences between factors, while SIMPER routine (Clarke and 225 

Warwick, 2001) was used to interpret trends, which drove observed differences in assemblage 226 

composition.  227 

 228 

3. Results 229 

 230 

3.1 Atoll habitat 231 

 232 
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The intertidal sediments in all four atolls comprised medium to very coarse sand (Folk and 233 

Ward, 1957) that had very poor to medium sorting similar levels of low organic content and 234 

almost no infauna present (Supplementary Table 1).  235 

 236 

The subtidal habitats were more variable (Supplementary Table 2). The habitat in Diego Garcia 237 

was dominated by a matrix of sandy mounds created by benthic organisms, covered in trails 238 

made by gastropods and hermit crabs (40 %), areas of bleached Bommies (22.8 %) on sand 239 

and coral rubble (26.3 %). There was very little occurrence of live coral (hard= 6.9 %; soft=0.4 240 

%). While some corals appeared to be recently bleached, others had been bleached for some 241 

time and were covered in red algae, green algae and other encrusting organisms (8.9 %). The 242 

breaking down of coral structure was evident throughout, with giant clams falling out of 243 

decomposing coral structure. Reef fishes still populated areas of bleached coral and were seen 244 

in 13.7 % of the frames.  245 

 246 

Across the four atolls, Salomon was the only place where live coral was recorded as a dominant 247 

habitat (43 %). There was still bleached branching corals (9.1 %) and bleached massive corals 248 

(13.2 %) between areas of sand (10.5 %) and mounds in sand (22.7 %). Here only 13.5 % of 249 

frames contained colonising crust on the bleached coral and 43.2 % of frames were populated 250 

with reef fishes.  251 

 252 

Egmont was characterised by mostly bleached massive corals (64 %), bleached branching 253 

corals (36 %) and turf algae (32 %). Reef fishes occurred in 68 % of the frames. Although 254 

extensively bleached, there were still some live hard (3 %) and soft corals present (4.4 %).  255 
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 256 

In Peros Banhos, the south west site had steep slopes of degrading corals down to flatter sandy 257 

areas, especially table corals that had broken and were littered upside down across the slopes. 258 

The rest of the sites were fairly homogenous flat areas, characterised mostly by bleached 259 

massive coral (84.9 %). There were examples of recently bleached branching corals with 260 

symbiotic porcelain crabs still present next to those that had bleached some time ago, evidenced 261 

by the encrusting pink algae (89.4 %). Live hard (3 %) and soft corals (4.4 %) were observed 262 

across the massive dead hard coral reef. Despite the dead coral habitat, 76 % of the frames were 263 

populated with reef fishes and sharks were also recorded. Subtidal habitat examples are shown 264 

in Figure 4.  265 

 266 

3.2 Atoll oceanography 267 

 268 

The CTD time series data (Figure 3) was consistent with the hypothesis that these atolls are 269 

subject to intermittent inundations at depth of cold, oceanic water. CTD time series, presented 270 

as t, decimal year day for 2016, in particular demonstrated the extent to which the tidal currents 271 

may be flushing the lagoons with water of oceanic origin, thereby providing a potential source 272 

of nutrients. However, a longer time series is needed to conclusively demonstrate this.  273 

CTD data from the time series moorings and the depth profile transects (Figure 2 & 274 

Supplementary Figures 2-5) demonstrate that the region is strongly stratified, potentially from 275 

nonlinear internal waves of depression that are supported by near-surface stratification and 276 

manifest themselves as short period elevations in temperature (Hosegood et al., 2019). These 277 

effects may promote shear-induced mixing and the downward diffusion of heat accumulated 278 

in the surface layers during daytime.   279 
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 280 

3.2.1 Diego Garcia 281 

 282 

The transect within Diego Garcia (Figure 2) began at the far southern extent of the lagoon in 283 

10.68 m water depth, where the water is sheltered from the effects of the open sea and whose 284 

only entrance into the lagoon is approximately 20 km to the north, where the maximum depth 285 

recorded was 28.79 m. As such, there is no possibility of water entering the lagoon by any other 286 

means, such as over a surrounding reef. Temperature (T) was vertically homogenous 287 

throughout the lagoon and implies efficient vertical mixing throughout the water column. A 288 

lateral gradient was apparent as temperature decreased from 31.05 C in the inner southern 289 

extent of the lagoon to <30.4 C towards the northern entrance. Similarly, salinity (S) was 290 

highest in the inner stations and reached 34.1, diminishing in an approximately linear manner 291 

horizontally towards outer stations, where S33.9. It should be noted that the apparent vertical 292 

homogeneity in T and S and simultaneous pronounced stratification in the density field is a 293 

relic of the colour scale bar. Density only ranges from 20.83 to 20.99, a difference of 0.16, and 294 

a similarly subtle temperate and salinity gradient also exists but is not expressed in Figure 2. 295 

Density alternates between regions of stable but weaker stratification, in which N2  10-4.5 s-2, 296 

and regions in which isopycnals exhibited a significant inclination to the vertical, within which 297 

N2 > 10-4 s-2.  The regions of maximum stratification coincided with parts of the lagoon in 298 

which dissolved oxygen (DO) was minimum, specifically the central part of the lagoon in 299 

which the channel narrows, and the southern extent of the lagoon where S was lowest. This 300 

suggests terrestrial input of freshwater, given the temperatures were highest. 301 

 302 
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Notably, there was evidence of a cold intrusion of deeper water entering the outer stations of 303 

the lagoon; the cold, saline, and therefore dense water was accompanied by decreased DO but 304 

had a negligible signature in chlorophyll-α (chl-α), which varied only in the horizontal. 305 

Distinctly higher concentration of chl-α >1 mg l-1, was observed at the enclosed inner end of 306 

the lagoon and dropped to background levels of <0.3 mg l-1 towards the extent of the outer 307 

stations. 308 

 309 

CTD time series showed evidence of colder water entering the lagoon near the bed (Figure 3). 310 

Whilst a semidiurnal variation in temperature was apparent near the surface, where temperature 311 

decreased from 30.83 C at t = 131.7 to 30.55 C approximately 6.5 hours later, before 312 

recovering back to initial values. The temperature at a depth of 19 m decreased more abruptly 313 

at t = 131.95 and 132.125, reaching 30.2 C from an initial temperature of 30.6 C. The 314 

accelerated decrease in temperature at these points suggests pulses of cooler water were 315 

advected into the lagoon and is consistent with the near-bed intrusion of cold water observed 316 

during the Maestro CTD transect. 317 

 318 

3.2.2 Salomon 319 

 320 

Despite the similar water depth range recorded within Salomon (11.62 m – 28.72 m) compared 321 

to Diego Garcia (10.68 m – 28.78 m), the vertical structure in Salomon was markedly different 322 

(Supplementary Figure 2). Pronounced and persistent stratification was evident across the 323 

entire transect. In the inner eastern portion of the transect, temperatures were lowest, T<29.4 324 

C, and increased towards the centre the lagoon where a pronounced maximum of T > 29.8 C 325 

occurred in the surface layer of 5 m depth. The S did not replicate the vertical structure, 326 

indicating a lateral gradient that was strongest, O (0.05 km-1), towards the western inner portion 327 
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of the transect, but decreased such that the S in the central lagoon was approximately 328 

homogenous with S34.3 compared to 34.5 in the west. In the centre of the lagoon, closest to 329 

the entrance in the north, there was no evidence of deep, cold water exchange with the open 330 

ocean.  331 

Similarly to Diego Garcia, DO was minimum where the stratification was strongest. In this 332 

case towards the beginning of the transect, where N2 >10-3.5 s-2, and DO <4.4 mg l-1. 333 

Stratification was elevated in a near surface layer, in the outer region, that is consistent with 334 

insolation effects, i.e. the generation of a diurnal thermocline, but also near the bed in a layer 335 

of 5 m thickness, that deepens from 10 m depth at the outer extent of the transect to 20 m 336 

towards the centre of the lagoon. Chlorophyll-α was low, at <0.3 mg l-1, in the inner portion of 337 

the lagoon but increased substantially to >1 mg l-1 near the bed in the centre of the lagoon. This 338 

is directly beneath a localised near surface region of elevated DO, but adjacent to the near bed 339 

minimum in DO. 340 

 341 

3.2.3 Egmont 342 

 343 

The CTD transect starting in the southeast of Egmont had a depth range of 4.99 m – 21.57 m 344 

(Supplementary Figure 3) and exhibited highest salinity, S34.26, near to the land (furthest 345 

from the entrance). The transect beginning in the southwest (9.15 m – 24.34 m depth range) 346 

(Supplementary Figure 4) indicated minimum salinities in the innermost stations, S34.18, 347 

increasing vertically downwards to 34.28 at the bed towards the centre of the lagoon but with 348 

little lateral variability. As S increased with depth, so did chl-α to a maximum concentration of 349 

0.7 mg l-1 at 15 m depth. In comparison, chl-α in the southwest transect reached 1.2 mg l-1 in 350 

inner stations. S and chl-α appear to therefore be positively correlated, with higher S suggesting 351 
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higher chl-α concentrations. As T did not necessarily follow S (Figure 3), due to insolation 352 

effects that vary on short timescales of hours, the chl-α appears to be related to the incursion 353 

of oceanic water from outside the atolls.  354 

 355 

In outer Egmont, temperature exhibits a general increasing trend during deployment, with 356 

occasional, abrupt decreases in temperature, demonstrated by the CTD time series, suggest the 357 

intrusion of colder water into the outer lagoon as pulses, such as at t = 132.02 (Figure 3). 358 

 359 

3.2.4 Peros Banhos 360 

 361 

The maximum water depth in Peros Banhos was not reached by the plankton net or the maestro 362 

CTD as there were concerns that the kit may become entangled and lost. The maximum water 363 

depth reached in Peros Banhos was 7.09 m – 37.95 m.  The Peros Banhos transect began at the 364 

northern edge of the lagoon near to an open channel that was not the primary channel. It was 365 

the most sheltered part of this lagoon, howeverpenetration of cold, saline water through this  366 

channel into the lagoon was detected (Supplementary Figure 5). Temperature <29.2C and S 367 

>34.5 at depths of >30 m in the inner extent of the transect were markedly different from the 368 

overlying water properties. Near surface stratification (N2 >10-3.5 s-2) was consistent with 369 

diurnal heating, particularly given the timing of the transect during the afternoon, but the high 370 

density of the near-bed intrusion also generated a strong density interface at a depth of 30 m, 371 

across which N2 10-3 s-2. The water of apparent oceanic origin exhibited high levels of chl-α, 372 

>1.5 mg l-1, and low DO 4.0 mg l-1. The concentrations of chl-α in the near-bed layer were 373 

the highest observed within all of the lagoons. The persistent stratification throughout the water 374 

column, but especially at the top of the near-bed chlorophyll-rich layer, would have prevented 375 

the diffusion of chl-α vertically to the overlying water. 376 
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 377 

CTD time series (Figure 3) demonstrated high frequency fluctuations in temperature 378 

throughout the tidal cycle. A pronounced decrease in temperature at t = 137.21, contribute to 379 

our hypothesis that the lagoons we studied may be subject to intermittent inundations at depth 380 

of cold, oceanic water. There is a lack of clear tidal periodicity associated with these 381 

temperature time series, although we note that a weak tidal signal may be obscured by lower 382 

frequency variability over a given 12 hour period. Longer time series should be undertaken to 383 

evidence tidal influence. 384 

 385 

 386 

3.3 Number of taxa and abundance 387 

 388 

The plankton samples contained 30 taxa (holoplankton = 17 & meroplankton =13) and 19,539 389 

individuals (Figure 5, Supplementary Table 3). Frequently observed holoplankton included 390 

crustaceans such as calanoid copepods >2mm (Figure 5a),chordates such as appendicularians 391 

(Figure 5b), radiolarians such as acantharians, chaetognaths (Figure 5c) and calanoid copepods  392 

<2mm (Figure 5d). Common meroplankton included crustaceans such as decapod larvae 393 

(Figure 5e) and molluscs such as gastropod larvae (Figure 5f). Fairly large fish larvae (~4mm) 394 

were also encountered (Fig 5g) and annelids such as polychaete larvae (Fig 5h). 395 

 396 

The following data are presented as mean ± SE. Number of taxa were not statistically different 397 

between atolls or between inner and outer regions (Supplementary Table 4). However, the 398 

abundance was significantly different between atolls and inner (In) and outer (Out) regions 399 

(Atoll: P = 0.001, Pseudo-F = 0.87; Exposure: P = 0.01, Pseudo-F = 4.36, Supplementary 400 
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Table 4). Abundance was consistently higher within inner regions across all atolls, excluding 401 

southeast Egmont (Figure 6). The greatest abundance occurred within inner stations in 402 

southwest Egmont (In= 2636 ± 1434.08, Out= 185.50 ± 26.80, Supplementary Table 3). 403 

Additionally, southwest Egmont had the largest difference between exposure regions (2450.50 404 

individuals), driven by an extremely high abundance of gastropod larvae within the inner 405 

stations. Diego Garcia possessed the next greatest mean abundance (In=458.57 ± 83.29, 406 

Out=322 ± 60.28), followed by southeast Egmont (In =150 ± 20.42, Out= 359.33 ± 194.01), 407 

Peros Banhos (In= 242.67 ± 49.65, Out= 87 ± 36.67), and Salomon (In= 141.25 ± 45.94, Out= 408 

117 ± 47.62).  409 

 410 

3.4 Zooplankton assemblage structure 411 

 412 

The assemblage composition was significantly different between atolls (P= 0.0001, Pseudo-413 

F= 6.39, Supplementary Table 4) and between inner and outer stations (P= 0.005, Pseudo-F= 414 

2.94). The interaction between atoll and exposure was also significantly different (P= 0.0002, 415 

Pseudo-F= 2.29). The two atolls in the north, Peros Banhos and Saloman were most similar to 416 

each other, Diego Garcia is the most isolated atoll of the group and was significantly different 417 

to the other three atolls, as was Egmont SW, however Egmont SE was similar to assemblages 418 

in Peros Banhos inner and outer regions, but only the outer region for Salomon with a 419 

significantly different assemblage to the inner region (Supplementary Table 4). Overall, the 420 

assemblage compositions within inner stations were more dispersed than those in outer stations 421 

(MVDISP: Inner= 1.06, Outer= 0.92, Figure 7). 422 

 423 
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Of the holoplankton, calanoid copepods <2 mm comprised Acartia spp., Acrocalanus spp., 424 

Bestolina spp., Calanidae (Juvenile), Calanopia spp., Calanopia spp. (Juvenile), Calocalanus 425 

pavo, Candacia catula, Candacia spp., Candacia spp. (Juvenile), Canthocalanus spp., 426 

Centropages furcatus, Centropages orsinii, Centropages spp., Clausocalanus spp., 427 

Cosmocalanus darwinii, Labidocera laevidentata, Labidocera spp.,  Paracalanidae (Juvenile), 428 

Paracalanus spp., Tortanus spp. Calanoid copepods >2 mm included Calanopia spp., 429 

Labidocera spp., Labidocera stylifera, Labidocera styliferi/koryeri, Nannocalanus spp., 430 

Paraeuchaeta spp., Subeucalanus spp., Tortanus spp., Undinula spp. Poecilostomatoid 431 

copepods <2 mm included Corycaeus spp., Farranula spp., Oncaeidae. Cyclopoid copepods 432 

<2 mm were represented by Oithona spp. The singular Monstrilloid copepod <2 mm was 433 

Monstrilla sp.  434 

Calanoid copepods <2 mm were the most dissimilar group between inner and outer regions 435 

(3.87 mean dissimilarity ± 1.25). They were most common to inner regions (In=3.57, Out=3.05, 436 

Figure 8, Supplementary Table 3). This trend was consistent among all atolls, except southeast 437 

Egmont which supported a higher abundance at outer stations. Additionally, within Egmont 438 

atoll, a calanoid copepod (<2 mm) from the family Tortanidae was observed and is believed to 439 

be a species that is not yet described. Calanoid copepods >2mm were more abundant within 440 

outer regions (In=1.09, Out=1.22). This was also true for Salomon, southeast Egmont and Peros 441 

Banhos. Within southwest Egmont, they were uniformly abundant, though within Diego Garcia 442 

they were present at greater abundance within inner stations. Similarly, chaetognaths relatively 443 

dissimilar between regions (3.37 mean dissimilarity ± 1.19) and typically occurred more 444 

frequently within outer stations (In= 1.8, Out= 1.85). This was reflected in all atolls except 445 

Peros Banhos. Contrary to this, appendicularians were more common at inner regions (In= 1.2, 446 

Out= 0.92). This occurrence was mirrored across all atolls barring southwest Egmont and 447 

within Peros Banhos where they were only present in the inner region of the atoll.  448 
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 449 

Of the meroplankton, gastropod larvae were the most dissimilar (4.26 mean dissimilarity ± 450 

0.91) and dominated inner regions (In= 1.91, Out= 1.17). This pattern was consistent in Diego 451 

Garcia and southwest Egmont, and Peros Banhos, where gastropod larvae were only present 452 

within inner stations.  However, within Salomon and southeast Egmont more individuals were 453 

found within outer stations. Decapod larvae were the second most dissimilar meroplankton 454 

group (2.23 mean dissimilarity ± 1.01) and were present at greater abundance within inner 455 

stations (In= 2.11, Out= 1.7) and this was consistent across atolls, except Diego Garcia. 456 

Polychaete larvae, however, were encountered more often within outer regions (In=0.1, 457 

Out=0.45). This was detected within Salomon and across southwest Egmont, and Peros Banhos 458 

wherein polychaete larvae only occurred within the outer region of the atoll. Polychaete larvae 459 

were not observed within Diego Garcia or southeast Egmont. There were no obvious trends in 460 

fish larval abundance across BIOT. Fish larvae were observed only within Diego Garcia, the 461 

outer region of Southwest Egmont and the inner region of Peros Banhos; abundance was 462 

consistently low.  463 

 464 

4. Discussion 465 

 466 

Diego Garcia, Salomon, Egmont and Peros Banhos all shared similar intertidal beach habitats 467 

characterised by course sands with low organic content. Subtidally, the extent of bleaching was 468 

the most consistent and extensive feature. Diego Garcia was dominated by bleached bombies 469 

and sandy mounts, Egmont and Peros Banhos were characterized by bleached massive and 470 
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degrading corals, whereas Salomon still supported live corals as a dominant habitat type. 471 

Despite bleaching effects, reef fishes were still observed in all atolls.  472 

 Zooplankton assemblages comprised different compositions depending on whether they were 473 

in the inner or outer atoll regions. Assemblages also varied between the atolls that were located 474 

furthest apart (Diego Garcia to all other atolls), and were more similar between atolls that were 475 

closer (Peros Banhos and Salomon).  Overall, in the outer regions of BIOT atolls, planktonic 476 

assemblages were more similar between atolls, than inner station assemblages between atolls; 477 

which were more diverse. The water property and the plankton data support the hypothesis that 478 

atolls have regional differences which is likely to be the result of increased isolation of inner 479 

stations from oceanic exposure relative to outer regions. Shorter water residence time and 480 

frequent flushing with increasing proximity to channels within these outer regions, likely 481 

selects for community similarities by facilitating planktonic transport both in and out of the 482 

atolls. These exchanges are known to not only modify the composition of the planktonic 483 

community but also the abundance (Hamner et al., 2007;Pagano et al., 2017). Evidence 484 

suggesting the flushing of oceanic water was observed within outer regions of Diego Garcia, 485 

Peros Banhos and Egmont; typically demonstrated by cold, saline and dense water. However, 486 

a longer time series is required to conclusively demonstrate tidal forcing of this water through 487 

deep water channels.  Tidal forcing through atoll channels has been documented (Green et al., 488 

2018) and the pumping of cold water from depth demonstrated within canyons (Walter et al., 489 

2012;Walter and Phelan, 2016) and to shallow coral reefs, driven by tidal bores (Leichter et 490 

al., 1996;Woodson, 2018). Given the density and low temperatures of these oceanic intrusions, 491 

deeper within the water column, it is clear that this flushing could not have originated from 492 

surface flow over the shallow reefs that surround some atolls. No evidence of oceanic flushing 493 

was found within outer stations in Salomon atoll, which was the only atoll where live coral was 494 

observed as a dominant habitat type. This may be a result of the tidal phase at the time of 495 
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sampling, which may have been conducive for the flushing out of oceanic water and/or oceanic 496 

exchange may be occurring in a location not represented within the transect.  Further detail on 497 

water properties within Chagos atolls, specifically temperature, can be found in (Sheppard et 498 

al., 2017). 499 

 500 

Abundance of plankton was shown to be consistently lower within outer regions, except 501 

southeast Egmont. Transport of plankton through channels adjacent to the coral reef may 502 

account for this reduction, as lower abundance of zooplankton following passage over the coral 503 

rim of atolls is well documented and has been linked to ingestion by the reef (Fabricius and 504 

Metzner, 2004;Wyatt et al., 2010) and planktivorous fish (Achuthankutty et al., 1989;Hamner 505 

et al., 2007). Increased surface temperatures and chlorophyll within some of the inner regions 506 

may also be driving the distinctions between inner and outer assemblages (Carassou et al., 507 

2010).   508 

 509 

The greater abundance of zooplankton present within outer stations in southeast Egmont is 510 

intriguing. Although not formally tested in this study, internal waves could perhaps account for 511 

this pattern as they are known to influence planktonic distributions (Shanks, 1983;Lennert-512 

Cody and Franks, 1999) and have been observed in the BIOT (Hosegood et al., 2019). 513 

Turbulence associated with internal waves (Moum et al., 1992) may increase predator-prey 514 

contact rates and have an overall positive effect on plankton feeding rates (Kiørboe, 1997;Saiz 515 

et al., 2003), thus altering the structure of planktonic assemblages. In addition, variability in 516 

oceanographic parameters believed important to planktonic distributions, such as temperature, 517 

salinity, water velocity and chlorophyll, may be associated with internal bores created by 518 

breaking internal waves (Leichter et al., 1996).    519 
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 520 

Egmont atoll was also distinctive due to the greatest difference between number of taxa in inner 521 

and outer stations, on the south-westerly transect. The remarkable abundance of zooplankton 522 

within the inner stations is represented mostly by an extreme abundance of gastropod larvae. 523 

Abundance of gastropod larvae has previously been positively related to solar radiation 524 

duration (Carassou et al., 2010); given the insolation effects evident within Egmont atoll it is 525 

possible that this might be influencing their abundance and distribution. Alternatively, the 526 

sampling may have captured a spawning event. This increased occurrence of gastropod larvae 527 

in inner regions is replicated across most atolls with other meroplankton, such as decapod 528 

larvae, also common to these areas. Increased occurrence of meroplankton within atolls is 529 

commonly documented (Gerber, 1981;Achuthankutty et al., 1989;Pagano et al., 2017) and 530 

specifically within the Chagos Archipelago, greater availability and longer residence of larvae 531 

has been linked to the weaker currents within lagoons (Riegl et al., 2012). Therefore, the co-532 

occurrence of increased zooplanktonic biomass within these areas perhaps suggests the 533 

importance of these inner, less exposed areas as nursery grounds for larval species. 534 

 535 

Although oceanographic processes are known drivers of zooplankton distribution and 536 

abundance (Kiørboe, 1997;Huggett, 2014;Lamont et al., 2014) and interactions within this 537 

study are evident, it is possible that behavioural responses and life history traits may also play 538 

a role, particularly for copepods; a major contribution to the zooplanktonic taxa in this study. 539 

Copepods have been observed to maintain position by active movements against the flow, 540 

migrating down to low current regions and attaching to substrate (Genin et al., 2005;Shang et 541 

al., 2008). As such their retention within lagoons has been observed. Of the copepods, calanoids 542 

<2 mm were more commonly found within inner regions, and the opposite was true for those 543 
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greater than 2 mm. Larger and oceanic copepods are likely present in higher densities at outer 544 

stations due to the inward flushing of ocean currents. The lower numbers observed within inner 545 

stations could also indicate higher predation rates, as it has been suggested that larger-sized 546 

individuals are actively-selected by predators (Suchman and Sullivan, 2000;van Deurs et al., 547 

2014). The dominance of smaller copepods in inner regions of atolls, could therefore suggest 548 

a size-based predation refuge. Additionally, these regions are likely to experience greater 549 

fluctuations in water properties, due to lack of interaction with regulatory, stable water bodies. 550 

The dominating presence of calanoids <2 mm, mostly represented by Acartia spp. and 551 

Centropages spp., in these areas could be indicative of this. Species of these genera produce 552 

resting eggs, which allow the persistence of copepod taxa when environmental conditions 553 

become unfavourable for growth and reproduction (Guerrero and Rodriguez, 1998). Greater 554 

retention of eggs within areas of reduced flushing could account for the increased abundance 555 

observed.  556 

 557 

The variability in zooplankton distribution and assemblage composition within atolls, with 558 

respect to oceanic exposure, demonstrates that past studies detailing broad comparisons 559 

between oceanic and lagoon areas may underestimate differences, if samples are only taken in 560 

the outer regions of atolls. Interactions with the water properties in these systems is clearly 561 

complex and requires more extensive studies to identify and determine how deep water flushing  562 

influences planktonic communities as they are transported both in and out of atolls. If a 563 

predictable planktonic zonation exists within these systems, comprehension of such ecological 564 

patterns is imperative for an indication of ecosystem health and functioning, particularly when 565 

such patterns are likely to be disrupted in the near future by global anthropogenic pressures 566 

such as climate change (Beaugrand, 2003). This is particularly concerning given the 567 

importance of zooplankton to ecosystem functioning (Hébert et al., 2017). Given the 568 
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widespread bleaching evident in this study, both from past and recent bleaching events, such 569 

changes are likely already at work. BIOT atolls are clearly not exempt from global issues such 570 

as climate change, and the high degree of localised protection does not change that. However, 571 

irrespective of such bleaching, the diversity and abundance of holoplankton and reef-associated 572 

fauna in the meroplankton in the region demonstrates that these atolls are dynamic and 573 

potentially resilient systems (Sheppard et al., 2012), and as such are important to preserve.  574 

 575 

Continued monitoring of relatively pristine sites such as the Chagos archipelago presents an 576 

invaluable opportunity to assess near-natural ecosystem functioning within coral atolls, provide 577 

ecological baselines and demonstrate best-case scenarios for impacts of climate change to reef 578 

systems. However, the lack of ecological and oceanographic data to currently support such 579 

investigations is a major hindrance. Further investigation of the spatiotemporal dynamics of 580 

these planktonic communities in response to oceanographic processes within BIOT is therefore 581 

necessary to continue and sustain management of these habitats, in the midst of such 582 

environmental uncertainty world-wide.  583 
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Figure 1. Map of BIOT with sampled atolls and their primary channels. Transects of plankton 791 

and water property profiles are shown, alongside CTD time series, intertidal cores and 792 

subtidal video.  793 

 794 

Figure 2. Example CTD transect, of Diego Garcia, indicating changes in temperature (T), 795 

salinity (S), density (), chlorophyll-α (chl-α), dissolved oxygen saturation (DO), and the 796 

Brunt-Vaisala frequency squared (N2) with depth (m) and horizontal position (km), with 797 

depth (m) and horizontal position (km). Black line indicates exposure boundaries, left (inner) 798 

& right (outer).  799 

 800 

Figure 3. Temperature time series from Valeport miniCTDs deployed at the entrance to (A) 801 

Diego Garcia, (B) Peros Banhos and (C) Egmont lagoons. With the exception of Egmont for 802 

which only the deep CTD was recovered, CTDs were located at a depth of approximately 4 m 803 

and a height above the bed of 2 m. For each instrument the mean depth throughout the record 804 

is indicated. 805 

Figure 4. Images of the dominant habitat types (A) Bleached coral Bommie on sand in Diego 806 

Garcia (B) Examples of living coral in Salomon (C) Bleached coral encrusted with coralline 807 

algae in Peros Banhos (D) Broken bleached table coral in Peros Banhos 808 

  809 

Figure 5. Images of zooplankton of interest to this study, holoplankton (A) Calanoid Copepod 810 

<2mm (Centropages spp. 1.55mm length) (B) Appendicularian (2.07mm) (C) Chaetognath 811 

(6.88 mm) (D) Calanoid copepods >2mm (Labidocera stylifera, 2.88mm) and meroplankton 812 

(E) Decapod larvae (~2mm) (F) Gastropod larvae  (~1mm)  (G) Fish larvae (~4mm), (H) 813 
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Polychaete larvae (~3.5mm). Images A-G were taken with an Infinity camera mounted to a 814 

Zeiss Discovery. V8 815 

 816 

Figure 6. Mean abundance (± SE) at Inner and Outer stations, within each of the four atolls  817 

 818 

Figure 7. Non-metric Multidimensional Scaling Plot of the assemblage composition of 819 

zooplankton, between atolls and regions of Inner and Outer stations.  820 

 821 

Figure 8. Mean abundance (± SE) for common taxa and/or taxa of ecological interest, at Inner 822 

and Outer stations across all atolls. (A) Taxa group 1, (B) Taxa group 2, a Taxa have been 823 

separated into groups for graphical representation,  824 

 825 

 826 

 827 
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