506 research outputs found

    Foliar Fertilization of Burley Tobacco at Topping

    Get PDF
    Many burley growers follow the practice of applying 1-2 gallons/A of liquid fertilizer to their tobacco crop by mixing it with their sucker control chemical and spraying the combined mixture on the crop soon after topping. This practice is thought to improve yields. However, previously reported testing of this practice by the University of Kentucky College of Agriculture indicated that it did not improve yields

    Effect of Subsoiling on Yield of Burley Tobacco

    Get PDF
    Compaction of tobacco fields caused by overworking or working soils when they are too wet has become a topic of concern to burley producers in recent years. Despite the viewpoint of some producers that annual subsoiling of tobacco fields is a profitable practice, particularly on soils which percolate water slowly, the University of Kentucky College of Agriculture recommends subsoiling only for a defined compaction problem. In such cases, some field studies have shown increased yields of burley to tillage practices that penetrate and shatter the compacted layer. Questions persist, however, about the effectiveness of single shank subsoilers used annually by some burley growers. Most of the concern about their effectiveness relates to the fact that, even if the soil is compacted, their use rarely results in shattering of compacted layers between row centers on which the subsoiler is used. This results in setter rows that are not likely to be centered over subsoiler slits, thereby minimizing the tool\u27s effectiveness. Because of the increased concern about compaction, and because one-row subsoilers are fairly commonly used tools, we conducted an on-farm field study during 1994 to test their effectiveness in producing burley tobacco

    Potash Studies on Burley Tobacco in Owen County, Kentucky

    Get PDF
    Since the late 1970\u27s, farmers in the Wheatley Community of Owen county have reported seeing potassium (K) deficiency on tobacco during the growing season. Most of them had been following University of Kentucky fertilizer recommendations for burley production. Analyses of cured leaf samples from one such crop in 1980 confirmed K deficiency. It was decided that the problem warranted conducting some field experiments in order to define the problem and hopefully develop a solution. Consequently, we located a field on the Harold Malcomb farm near Wheatly, that tested low in soil K and designed a field experiment with the objectives of (1) testing the effectiveness of UK soil test recommendations for potash, (2) testing K rates applied pre-plant, sidedressed, and in combination, and (3) since soil Zinc (Zn) levels were low, we also decided to test for a tobacco yield response to fertilizer Zn. Subsequently, K studies were conducted in different fields of the Malcomb farm during 1981, 1984, 1985, 1986, and i987, and in a field on the Steve Simpson farm near New Columbus in 1986. The following report summarizes what we learned

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Mussel farming production capacity and food web interactions in a mesotrophic environment

    Get PDF
    Low trophic aquaculture (LTA), such as bivalve farming, offers promising avenues to supply sustainable seafood and aquafeed. While bivalve farming usually occurs in highly productive coastal areas which already support numerous human activities and suffer from environmental pressures, numerical tools offer a promising avenue to explore and assess biomass production potential and associated ecosystemic impacts for further development of the industry and prospection of new exploitation sites. In this study, we coupled an ecophysiological model, the dynamic energy budget theory (DEB), with an ecosystem model (NORWECOM.E2E) to simulate blue mussel Mytilus spp. farming production and effects based on the food web in the mesotrophic Hardangerfjord in western Norway. We tested several levels of fjord-scale farming intensity and assessed 2 production purposes: aquafeed and human consumption. Results suggested the Hardangerfjord could host large-scale mussel farming for both purposes. However, large exploitation schemes displayed detrimental effects on individual mussel growth (39% less wet mass after 2 yr) and especially on secondary production (decrease of 33% after 1 yr) due to acute trophic competition. Simulations showed short production cycles for aquafeed were more efficient to exploit primary production, since young and small mussels have lower maintenance and reproduction costs. Dissolved nutrient inputs from salmonid farms had marginal effects on primary production (<2%). However, salmonid and mussel farming activities could compete for the sites with the highest production potential.publishedVersio

    ASAS Light Curves of Intermediate Mass Eclipsing Binaries and the Parameters of HI Mon

    Full text link
    We present a catalog of 56 candidate intermediate mass eclipsing binary systems extracted from the 3rd data release of the All Sky Automated Survey. We gather pertinent observational data and derive orbital properties, including ephemerides, for these systems as a prelude to anticipated spectroscopic observations. We find that 37 of the 56, or ~66% of the systems are not identified in the Simbad Astronomical Database as known binaries. As a specific example, we show spectroscopic data obtained for the system HI Mon (B0 V + B0.5 V) observed at key orbital phases based on the computed ephemeris, and we present a combined spectroscopic and photometric solution for the system and give stellar parameters for each component.Comment: 83 pages, 63 figure

    Charge transfer dynamical processes at graphene-transition metal oxides/electrolyte interface for energy storage: Insights from in-situ Raman spectroelectrochemistry

    Get PDF
    Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGO HT ; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co 3 O 4 ) and manganese (MnO 2 ) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm -1 belonging to Co 3 O 4 , CoO, MnO 2 and carbon-carbon bonding occurring at 1340 cm -1 , 1590 cm -1 and 2670 cm -1 belonging to D, G, and 2D bands, respectively, are analyzed with applied potential. Consistent variation in Raman band position and intensity ratio reveal structural modification, combined charge transfer due to localized orbital re-hybridization and mechanical strain, all resulting in finely tuned electronic properties. Moreover, the heterogeneous basal and edge plane sites of graphene nanosheets in conjunction with transition metal oxide \u27hybrids\u27 reinforce efficient surface/interfacial electron transfer and available electronic density of states near Fermi level for enhanced performance. We estimated the extent and nature (n- or p-) of charge transfer complemented with Density Functional Theory calculations affected by hydration and demonstrate the synergistic coupling between graphene nanosheets and nanoscale cobalt (and manganese) oxides for applied electrochemical applications

    Broadband laser cooling of trapped atoms with ultrafast pulses

    Full text link
    We demonstrate broadband laser cooling of atomic ions in an rf trap using ultrafast pulses from a modelocked laser. The temperature of a single ion is measured by observing the size of a time-averaged image of the ion in the known harmonic trap potential. While the lowest observed temperature was only about 1 K, this method efficiently cools very hot atoms and can sufficiently localize trapped atoms to produce near diffraction-limited atomic images

    On the Mixing of the Scalar Mesons f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710)

    Full text link
    Based on a 3×33\times3 mass matrix describing the mixing of the scalar states f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710), the hadronic decays of the three states are investigated. Taking into account the two possible assumptions concerning the mass level order of the bare states ∣N>=∣uuˉ+ddˉ>/2|N>=|u\bar{u}+d\bar{d}>/\sqrt{2}, ∣S>=∣ssˉ>|S>=|s\bar{s}> and ∣G>=∣gg>|G>=|gg> in the scalar sector, MG>MS>MNM_G > M_S > M_N and MG>MN>MSM_G > M_N > M_S, we obtain the glueball-quarkonia content of the three states by solving the unlinear equations. Some predictions about the decays of the three states in two cases are presented, which can provide a stringent consistency check of the two assumptions.Comment: revtex 10 pages, 1 eps figur
    • …
    corecore