1,669 research outputs found
Applying weighted network measures to microarray distance matrices
In recent work we presented a new approach to the analysis of weighted
networks, by providing a straightforward generalization of any network measure
defined on unweighted networks. This approach is based on the translation of a
weighted network into an ensemble of edges, and is particularly suited to the
analysis of fully connected weighted networks. Here we apply our method to
several such networks including distance matrices, and show that the clustering
coefficient, constructed by using the ensemble approach, provides meaningful
insights into the systems studied. In the particular case of two data sets from
microarray experiments the clustering coefficient identifies a number of
biologically significant genes, outperforming existing identification
approaches.Comment: Accepted for publication in J. Phys.
Full-scale fire tests of post-tensioned timber beams
This paper describes a series of full-scale furnace tests on loaded post tensioned LVL beams. Each beam was designed to exhibit a specific failure mechanism when exposed to the standard ISO834 fire. In addition to the beams a number of steel anchorage protection schemes were also investigated. These included wrapping the ends in kaowool, using intumescent paint, covering the anchorage with fire rated plasterboard and covering the anchorage with timber (LVL). The results of the full-scale tests cover temperature distributions through the timber members during the tests, the temperatures reached within the cavity and those of the tendons suspended within the cavity, the relaxation of the tendons during the test, the failure mechanisms experienced, and a summary of the anchorage protection details and their effectiveness. Recommendations for the design of both post-tensioned timber beams and associated anchorages are also provided
Dynamics of gene expression and the regulatory inference problem
From the response to external stimuli to cell division and death, the
dynamics of living cells is based on the expression of specific genes at
specific times. The decision when to express a gene is implemented by the
binding and unbinding of transcription factor molecules to regulatory DNA.
Here, we construct stochastic models of gene expression dynamics and test them
on experimental time-series data of messenger-RNA concentrations. The models
are used to infer biophysical parameters of gene transcription, including the
statistics of transcription factor-DNA binding and the target genes controlled
by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl
Elucidation of Directionality for Co-Expressed Genes: Predicting Intra-Operon Termination Sites
We present a novel framework for inferring regulatory and sequence-level
information from gene co-expression networks. The key idea of our methodology
is the systematic integration of network inference and network topological
analysis approaches for uncovering biological insights. We determine the gene
co-expression network of Bacillus subtilis using Affymetrix GeneChip time
series data and show how the inferred network topology can be linked to
sequence-level information hard-wired in the organism's genome. We propose a
systematic way for determining the correlation threshold at which two genes are
assessed to be co-expressed by using the clustering coefficient and we expand
the scope of the gene co-expression network by proposing the slope ratio metric
as a means for incorporating directionality on the edges. We show through
specific examples for B. subtilis that by incorporating expression level
information in addition to the temporal expression patterns, we can uncover
sequence-level biological insights. In particular, we are able to identify a
number of cases where (i) the co-expressed genes are part of a single
transcriptional unit or operon and (ii) the inferred directionality arises due
to the presence of intra-operon transcription termination sites.Comment: 7 pages, 8 figures, accepted in Bioinformatic
Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery
Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc
Progress toward curing HIV infection with hematopoietic cell transplantation.
HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood
SMART: Unique splitting-while-merging framework for gene clustering
Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc
Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data
We present two complementary approaches for the interpretation of clusters of
co-regulated genes, such as those obtained from DNA chips and related methods.
Starting from a cluster of genes with similar expression profiles, two basic
questions can be asked:
1. Which mechanism is responsible for the coordinated transcriptional response
of the genes? This question is approached by extracting motifs that are shared
between the upstream sequences of these genes. The motifs extracted are putative
cis-acting regulatory elements.
2. What is the physiological meaning for the cell to express together these
genes? One way to answer the question is to search for potential metabolic
pathways that could be catalyzed by the products of the genes. This can be
done by selecting the genes from the cluster that code for enzymes, and trying
to assemble the catalyzed reactions to form metabolic pathways.
We present tools to answer these two questions, and we illustrate their use with
selected examples in the yeast Saccharomyces cerevisiae. The tools are available
on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/;
http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)
The ‘sweet spot’ between submission and subversion: diaspora, education and the cosmopolitan project
- …
