1,669 research outputs found

    Applying weighted network measures to microarray distance matrices

    Full text link
    In recent work we presented a new approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks. This approach is based on the translation of a weighted network into an ensemble of edges, and is particularly suited to the analysis of fully connected weighted networks. Here we apply our method to several such networks including distance matrices, and show that the clustering coefficient, constructed by using the ensemble approach, provides meaningful insights into the systems studied. In the particular case of two data sets from microarray experiments the clustering coefficient identifies a number of biologically significant genes, outperforming existing identification approaches.Comment: Accepted for publication in J. Phys.

    Full-scale fire tests of post-tensioned timber beams

    Get PDF
    This paper describes a series of full-scale furnace tests on loaded post tensioned LVL beams. Each beam was designed to exhibit a specific failure mechanism when exposed to the standard ISO834 fire. In addition to the beams a number of steel anchorage protection schemes were also investigated. These included wrapping the ends in kaowool, using intumescent paint, covering the anchorage with fire rated plasterboard and covering the anchorage with timber (LVL). The results of the full-scale tests cover temperature distributions through the timber members during the tests, the temperatures reached within the cavity and those of the tendons suspended within the cavity, the relaxation of the tendons during the test, the failure mechanisms experienced, and a summary of the anchorage protection details and their effectiveness. Recommendations for the design of both post-tensioned timber beams and associated anchorages are also provided

    Dynamics of gene expression and the regulatory inference problem

    Full text link
    From the response to external stimuli to cell division and death, the dynamics of living cells is based on the expression of specific genes at specific times. The decision when to express a gene is implemented by the binding and unbinding of transcription factor molecules to regulatory DNA. Here, we construct stochastic models of gene expression dynamics and test them on experimental time-series data of messenger-RNA concentrations. The models are used to infer biophysical parameters of gene transcription, including the statistics of transcription factor-DNA binding and the target genes controlled by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl

    Elucidation of Directionality for Co-Expressed Genes: Predicting Intra-Operon Termination Sites

    Full text link
    We present a novel framework for inferring regulatory and sequence-level information from gene co-expression networks. The key idea of our methodology is the systematic integration of network inference and network topological analysis approaches for uncovering biological insights. We determine the gene co-expression network of Bacillus subtilis using Affymetrix GeneChip time series data and show how the inferred network topology can be linked to sequence-level information hard-wired in the organism's genome. We propose a systematic way for determining the correlation threshold at which two genes are assessed to be co-expressed by using the clustering coefficient and we expand the scope of the gene co-expression network by proposing the slope ratio metric as a means for incorporating directionality on the edges. We show through specific examples for B. subtilis that by incorporating expression level information in addition to the temporal expression patterns, we can uncover sequence-level biological insights. In particular, we are able to identify a number of cases where (i) the co-expressed genes are part of a single transcriptional unit or operon and (ii) the inferred directionality arises due to the presence of intra-operon transcription termination sites.Comment: 7 pages, 8 figures, accepted in Bioinformatic

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    Progress toward curing HIV infection with hematopoietic cell transplantation.

    Get PDF
    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood

    SMART: Unique splitting-while-merging framework for gene clustering

    Get PDF
    Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc

    Application of regulatory sequence analysis and metabolic network analysis to the interpretation of gene expression data

    Get PDF
    We present two complementary approaches for the interpretation of clusters of co-regulated genes, such as those obtained from DNA chips and related methods. Starting from a cluster of genes with similar expression profiles, two basic questions can be asked: 1. Which mechanism is responsible for the coordinated transcriptional response of the genes? This question is approached by extracting motifs that are shared between the upstream sequences of these genes. The motifs extracted are putative cis-acting regulatory elements. 2. What is the physiological meaning for the cell to express together these genes? One way to answer the question is to search for potential metabolic pathways that could be catalyzed by the products of the genes. This can be done by selecting the genes from the cluster that code for enzymes, and trying to assemble the catalyzed reactions to form metabolic pathways. We present tools to answer these two questions, and we illustrate their use with selected examples in the yeast Saccharomyces cerevisiae. The tools are available on the web (http://ucmb.ulb.ac.be/bioinformatics/rsa-tools/; http://www.ebi.ac.uk/research/pfbp/; http://www.soi.city.ac.uk/~msch/)
    corecore