353 research outputs found
Chaperoning steroid hormone signaling via reversible acetylation
Glucocorticoid receptor (GR) and related steroid hormone receptors are ligand-dependent transcription factors whose regulation is critical for both homeostasis and diseases. The structural maturation of the GR has been shown to require the Hsp90 molecular chaperone complex. Evidence indicates that Hsp90-dependent maturation is critical for GR ligand binding capacity and activity. While the role for Hsp90 in GR function is well established, the regulation of this process is not well understood. Here we discuss a recent finding that identifies reversible protein acetylation controlled by the deacetylase HDAC6 as a novel mechanism that regulates Hsp90-dependent GR maturation. We will also speculate on the implications of this finding in steroid hormone signaling, oncogenic transformation and its potential therapeutic utility
Inhibition of constitutive and cxc-chemokine-induced NF-κB activity potentiates ansamycin-based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells
Background: We determined how CXC-chemokine signalling and necrosis factor-B (NF-B) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC).Methods:Geldanamycin and 17-AAG toxicity, together with the CXCR2 antagonist AZ10397767 or NF-B inhibitor BAY11-7082, was assessed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in two CRPC lines, DU145 and PC3. Flow cytometry quantified apoptotic or necrosis profiles. Necrosis factor-B activity was determined by luciferase readouts or indirectly by quantitative PCR and ELISA-based determination of CXCL8 expression.Results:Geldanamycin and 17-AAG reduced PC3 and DU145 cell viability, although PC3 cells were less sensitive. Addition of AZ10397767 increased GA (e.g., PC3 IC 20: from 1.670.4 to 0.180.2 nM) and 17-AAG (PC3 IC 20: 43.77.8 to 0.641.8 nM) potency in PC3 but not DU145 cells. Similarly, BAY11-7082 increased the potency of 17-AAG in PC3 but not in DU145 cells, correlating with the elevated constitutive NF-B activity in PC3 cells. AZ10397767 increased 17-AAG-induced apoptosis and necrosis and decreased NF-B activity/CXCL8 expression in 17-AAG-treated PC3 cells.Conclusion:Ansamycin cytotoxicity is enhanced by inhibiting NF-B activity and/or CXC-chemokine signalling in CRPC cells. Detecting and/or inhibiting NF-B activity may aid the selection and treatment response of CRPC patients to Hsp90 inhibitors.</p
Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects
Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and β) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/β)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (HTS) and monitoring the efficacy of Hsp90 inhibitors in cell culture and live mice. HTS of a 30,176 small-molecule chemical library in cell culture identified a compound, N-(5-methylisoxazol-3-yl)-2-[4-(thiophen-2-yl)-6-(trifluoromethyl)pyrimidin-2-ylthio]acetamide (CP9), that binds to Hsp90(α/β) and displays characteristics of Hsp90 inhibitors, i.e., degradation of Hsp90 client proteins and inhibition of cell proliferation, glucose metabolism, and thymidine kinase activity, in multiple cancer cell lines. The efficacy of CP9 in disrupting Hsp90(α/β)/p23 interactions and cell proliferation in tumor xenografts was evaluated by non-invasive, repetitive Renilla luciferase and Firefly luciferase imaging, respectively. At 38 h posttreatment (80 mg/kg × 3, i.p.), CP9 led to selective disruption of Hsp90α/p23 as compared with Hsp90β/p23 interactions. Small-animal PET/CT in the same cohort of mice showed that CP9 treatment (43 h) led to a 40% decrease in 18F-fluorodeoxyglucose uptake in tumors relative to carrier control-treated mice. However, CP9 did not lead to significant degradation of Hsp90 client proteins in tumors. We performed a structural activity relationship study with 62 analogs of CP9 and identified A17 as the lead compound that outperformed CP9 in inhibiting Hsp90(α/β)/p23 interactions in cell culture. Our efforts demonstrated the power of coupling of HTS with multimodality molecular imaging and led to identification of Hsp90 inhibitors
Lobular Carcinomas In Situ Display Intralesion Genetic Heterogeneity and Clonal Evolution in the Progression to Invasive Lobular Carcinoma
Purpose:; Lobular carcinoma; in situ; (LCIS) is a preinvasive lesion of the breast. We sought to define its genomic landscape, whether intralesion genetic heterogeneity is present in LCIS, and the clonal relatedness between LCIS and invasive breast cancers.; Experimental Design:; We reanalyzed whole-exome sequencing (WES) data and performed a targeted amplicon sequencing validation of mutations identified in 43 LCIS and 27 synchronous more clinically advanced lesions from 24 patients [9 ductal carcinomas; in situ; (DCIS), 13 invasive lobular carcinomas (ILC), and 5 invasive ductal carcinomas (IDC)]. Somatic genetic alterations, mutational signatures, clonal composition, and phylogenetic trees were defined using validated computational methods.; Results:; WES of 43 LCIS lesions revealed a genomic profile similar to that previously reported for ILCs, with; CDH1; mutations present in 81% of the lesions. Forty-two percent (18/43) of LCIS were found to be clonally related to synchronous DCIS and/or ILCs, with clonal evolutionary patterns indicative of clonal selection and/or parallel/branched progression. Intralesion genetic heterogeneity was higher among LCIS clonally related to DCIS/ILC than in those nonclonally related to DCIS/ILC. A shift from aging to APOBEC-related mutational processes was observed in the progression from LCIS to DCIS and/or ILC in a subset of cases.; Conclusions:; Our findings support the contention that LCIS has a repertoire of somatic genetic alterations similar to that of ILCs, and likely constitutes a nonobligate precursor of breast cancer. Intralesion genetic heterogeneity is observed in LCIS and should be considered in studies aiming to develop biomarkers of progression from LCIS to more advanced lesions
Intra- and Inter-Tumor Heterogeneity of BRAFV600EMutations in Primary and Metastatic Melanoma
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful
Improving the outcome of patients with castration-resistant prostate cancer through rational drug development
Castration-resistant prostate cancer (CRPC) is now the second most common cause of male cancer-related mortality. Although docetaxel has recently been shown to extend the survival of patients with CRPC in two large randomised phase III studies, subsequent treatment options remain limited for these patients. A greater understanding of the molecular causes of castration resistance is allowing a more rational approach to the development of new drugs and many new agents are now in clinical development. Therapeutic targets include the adrenal steroid synthesis pathway, androgen receptor signalling, the epidermal growth factor receptor family, insulin growth factor-1 receptor, histone deacetylase, heat shock protein 90 and the tumour vasculature. Drugs against these targets are giving an insight into the molecular pathogenesis of this disease and promise to improve patient quality of life and survival. Finally, the recent discovery of chromosomal translocations resulting in the upregulation of one of at least 3 ETS genes (ERG, ETV1, ETV4) may lead to novel agents for the treatment of this disease
A Reliable Method for the Selection of Exploitable Melanoma Archival Paraffin Embedded Tissues for Transcript Biomarker Profiling
The source tissue for biomarkers mRNA expression profiling of tumors has traditionally been fresh-frozen tissue. The adaptation of formalin-fixed, paraffin-embedded (FFPE) tissues for routine mRNA profiling would however be invaluable in view of their abundance and the clinical information related to them. However, their use in the clinic remains a challenge due to the poor quality of RNA extracted from such tissues. Here, we developed a method for the selection of melanoma archival paraffin-embedded tissues that can be reliably used for transcript biomarker profiling. For that, we used qRT-PCR to conduct a comparative study in matched pairs of frozen and FFPE melanoma tissues of the expression of 25 genes involved in angiogenesis/tumor invasion and 15 housekeeping genes. A classification method was developed that can select the samples with a good frozen/FFPE correlation and identify those that should be discarded on the basis of paraffin data for four reference genes only. We propose therefore a simple and inexpensive assay which improves reliability of mRNA profiling in FFPE samples by allowing the identification and analysis of “good” samples only. This assay which can be extended to other genes would however need validation at the clinical level and on independent tumor series
Targeting HSP90 for cancer therapy
Heat-shock proteins (HSPs) are molecular chaperones that regulate protein folding to ensure correct conformation and translocation and to avoid protein aggregation. Heat-shock proteins are increased in many solid tumours and haematological malignancies. Many oncogenic proteins responsible for the transformation of cells to cancerous forms are client proteins of HSP90. Targeting HSP90 with chemical inhibitors would degrade these oncogenic proteins, and thus serve as useful anticancer agents. This review provides an overview of the HSP chaperone machinery and the structure and function of HSP90. We also highlight the key oncogenic proteins that are regulated by HSP90 and describe how inhibition of HSP90 could alter the activity of multiple signalling proteins, receptors and transcriptional factors implicated in carcinogenesis
Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study
Background: Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Methods: Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i) the percentage of positive cells and ii) the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as a
- …