259 research outputs found
Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer uses a near-infrared camera to
measure the optical path length variations between the two AO-corrected
apertures and provide high-angular resolution observations for all its science
channels (1.5-13 m). There is however a wavelength dependent component to
the atmospheric turbulence, which can introduce optical path length errors when
observing at a wavelength different from that of the fringe sensing camera.
Water vapor in particular is highly dispersive and its effect must be taken
into account for high-precision infrared interferometric observations as
described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this
paper, we describe the new sensing approach that has been developed at the LBT
to measure and monitor the optical path length fluctuations due to dry air and
water vapor separately. After reviewing the current performance of the system
for dry air seeing compensation, we present simultaneous H-, K-, and N-band
observations that illustrate the feasibility of our feedforward approach to
stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
LBT observations of the HR 8799 planetary system: First detection of HR8799e in H band
We have performed H and Ks band observations of the planetary system around
HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES
Camera. The excellent instrument performance (Strehl ratios up to 80% in H
band) enabled detection the inner planet HR8799e in the H band for the first
time. The H and Ks magnitudes of HR8799e are similar to those of planets c and
d, with planet e slightly brighter. Therefore, HR8799e is likely slightly more
massive than c and d. We also explored possible orbital configurations and
their orbital stability. We confirm that the orbits of planets b, c and e are
consistent with being circular and coplanar; planet d should have either an
orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c.
Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion
resonances with c and d, while coplanar and circular orbits are allowed for a
5:2 resonance. The analysis of dynamical stability shows that the system is
highly unstable or chaotic when planetary masses of about 5 MJup for b and 7
MJup for the other planets are adopted. Significant regions of dynamical
stability for timescales of tens of Myr are found when adopting planetary
masses of about 3.5, 5, 5, and 5 Mjup for HR 8799 b, c, d, and e respectively.
These masses are below the current estimates based on the stellar age (30 Myr)
and theoretical models of substellar objects.Comment: 13 pages, 10 figures, A&A, accepte
Characterization of the Benchmark Binary NLTT 33370
We report the confirmation of the binary nature of the nearby, very low-mass
system NLTT 33370 with adaptive optics imaging and present resolved
near-infrared photometry and integrated light optical and near-infrared
spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show
significant orbital motion between 2013 February and 2013 April. Optical
spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708
Angstrom absorption that indicate the system is younger than field age.
VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and
spectral morphology that is consistent with other young, very low-mass dwarfs.
We combine the constraints from all age diagnostics to estimate a system age of
~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components
point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and
B, respectively. The observed spectra, derived temperatures, and estimated age
combine to constrain the component spectral types to the range M6-M8.
Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from
the estimated luminosities of the components. KPNO-Phoenix spectra allow us to
estimate the systemic radial velocity of the binary. The Galactic kinematics of
NLTT 33370AB are broadly consistent with other young stars in the Solar
neighborhood. However, definitive membership in a young, kinematic group cannot
be assigned at this time and further follow-up observations are necessary to
fully constrain the system's kinematics. The proximity, age, and late-spectral
type of this binary make it very novel and an ideal target for rapid, complete
orbit determination. The system is one of only a few model calibration
benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The
Astrophysical Journa
Hunting for planets in the HL Tau disk
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused
by planetary bodies. Given the young age of this system, if confirmed, this
finding would imply very short timescales for planet formation, probably in a
gravitationally unstable disk. To test this scenario, we searched for young
planets by means of direct imaging in the L'-band using the Large Binocular
Telescope Interferometer mid-infrared camera. At the location of two prominent
dips in the dust distribution at ~70AU (~0.5") from the central star we reach a
contrast level of ~7.5mag. We did not detect any point source at the location
of the rings. Using evolutionary models we derive upper limits of ~10-15MJup at
<=0.5-1Ma for the possible planets. With these sensitivity limits we should
have been able to detect companions sufficiently massive to open full gaps in
the disk. The structures detected at mm-wavelengths could be gaps in the
distributions of large grains on the disk midplane, caused by planets not
massive enough to fully open gaps. Future ALMA observations of the molecular
gas density profile and kinematics as well as higher contrast infrared
observations may be able to provide a definitive answer.Comment: Accepted for publication on ApJ Letter
The absolute age of the globular cluster M15 using near-infrared adaptive optics images from PISCES/LBT
We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor
Galactic globular cluster M\,15 obtained with images collected with the LUCI1
and PISCES cameras available at the Large Binocular Telescope (LBT). We show
how the use of First Light Adaptive Optics system coupled with the (FLAO)
PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By
analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES
color magnitude diagram is fully comparable with analogous space-based data.
The smaller field of view is balanced by the shorter exposure time required to
reach a similar photometric limit. We investigated the absolute age of M\,15 by
means of two methods: i) by determining the age from the position of the main
sequence turn-off; and ii) by the magnitude difference between the MSTO and the
well-defined knee detected along the faint portion of the MS. We derive
consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and
13.3+-1.1 Gyr, respectively.Comment: 13 pages, 8 figures, ApJ accepte
HST measures of Mass Accretion Rates in the Orion Nebula Cluster
The present observational understanding of the evolution of the mass
accretion rates (Macc) in pre-main sequence stars is limited by the lack of
accurate measurements of Macc over homogeneous and large statistical samples of
young stars. Such observational effort is needed to properly constrain the
theory of star formation and disk evolution. Based on HST/WFPC2 observations,
we present a study of Macc for a sample of \sim 700 sources in the Orion Nebula
Cluster, ranging from the Hydrogen-burning limit to M\ast \sim 2M\odot. We
derive Macc from both the U-band excess and the H{\alpha} luminosity
(LH{\alpha}), after determining empirically both the shape of the typical
accretion spectrum across the Balmer jump and the relation between the
accretion luminosity (Lacc) and LH{\alpha}, that is Lacc/L\odot =
(1.31\pm0.03)\cdotLH{\alpha}/L\odot + (2.63\pm 0.13). Given our large
statistical sample, we are able to accurately investigate relations between
Macc and the parameters of the central star such as mass and age. We clearly
find Macc to increase with stellar mass, and decrease over evolutionary time,
but we also find strong evidence that the decay of Macc with stellar age occurs
over longer timescales for more massive PMS stars. Our best fit relation
between these parameters is given by: log(Macc/M\odot\cdotyr)=(-5.12 \pm 0.86)
-(0.46 \pm 0.13) \cdot log(t/yr) -(5.75 \pm 1.47)\cdot log(M\ast/M\odot) +
(1.17 \pm 0.23)\cdot log(t/yr) \cdot log(M\ast/M\odot). These results also
suggest that the similarity solution model could be revised for sources with
M\ast > 0.5M\odot. Finally, we do not find a clear trend indicating
environmental effects on the accretion properties of the sources.Comment: 17 pages, 15 figures, accepted for publication in Ap
Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results
The mid-infrared properties of pre-planetary disks are sensitive to the
temperature and flaring profiles of disks for the regions where planet
formation is expected to occur. In order to constrain theories of planet
formation, we have carried out a mid-infrared (wavelength 10.7 microns) size
survey of young stellar objects using the segmented Keck telescope in a novel
configuration. We introduced a customized pattern of tilts to individual mirror
segments to allow efficient sparse-aperture interferometry, allowing full
aperture synthesis imaging with higher calibration precision than traditional
imaging. In contrast to previous surveys on smaller telescopes and with poorer
calibration precision, we find most objects in our sample are partially
resolved. Here we present the main observational results of our survey of 5
embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori
system, and 5 emission-line objects of uncertain classification. The observed
mid-infrared sizes do not obey the size-luminosity relation found at
near-infrared wavelengths and a companion paper will provide further modelling
analysis of this sample. In addition, we report imaging results for a few of
the most resolved objects, including complex emission around embedded massive
protostars, the photoevaporating circumbinary disk around MWC 361A, and the
subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure
L'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCam
We present the first observations obtained with the L'-band AGPM vortex
coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase
Mask) is a vector vortex coronagraph made from diamond subwavelength gratings.
It is designed to improve the sensitivity and dynamic range of high-resolution
imaging at very small inner working angles, down to 0.09 arcseconds in the case
of LBTI/LMIRCam in the L' band. During the first hours on sky, we observed the
young A5V star HR\,8799 with the goal to demonstrate the AGPM performance and
assess its relevance for the ongoing LBTI planet survey (LEECH). Preliminary
analyses of the data reveal the four known planets clearly at high SNR and
provide unprecedented sensitivity limits in the inner planetary system (down to
the diffraction limit of 0.09 arcseconds).Comment: 9 pages, 4 figures, SPIE proceeding
An L Band Spectrum of the Coldest Brown Dwarf
The coldest brown dwarf, WISE 0855, is the closest known planetary-mass,
free-floating object and has a temperature nearly as cold as the solar system
gas giants. Like Jupiter, it is predicted to have an atmosphere rich in
methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint
at near-infrared wavelengths and emits almost all its energy in the
mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1
micron (M band), revealing water vapor features. Here, we present a spectrum of
WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere
models that include a range of compositions (metallicities and C/O ratios) and
water ice clouds. Methane absorption is clearly present in the spectrum. The
mid-infrared color can be better matched with a methane abundance that is
depleted relative to solar abundance. We find that there is evidence for water
ice clouds in the M band spectrum, and we find a lack of phosphine spectral
features in both the L and M band spectra. We suggest that a deep continuum
opacity source may be obscuring the near-infrared flux, possibly a deep
phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE
0855 provide critical constraints for cold planetary atmospheres, bridging the
temperature range between the long-studied solar system planets and accessible
exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs
with high-precision spectroscopy across the infrared, allowing us to study
their compositions and cloud properties, and to infer their atmospheric
dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap
- …
