8,674 research outputs found
Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes
We study excited-state properties of neutron-rich calcium isotopes based on
chiral two- and three-nucleon interactions. We first discuss the details of our
many-body framework, investigate convergence properties, and for two-nucleon
interactions benchmark against coupled-cluster calculations. We then focus on
the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended
pfg9/2 valence space, we obtain a good level of agreement with experiment. We
also study electromagnetic transitions and find that experimental data are well
described by our calculations. In addition, we provide predictions for
unexplored properties of neutron-rich calcium isotopes.Comment: 15 pages, 22 figures, published versio
Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties
We study ground- and excited-state properties of all sd-shell nuclei with
neutron and proton numbers 8 <= N,Z <= 20, based on a set of low-resolution
two- and three-nucleon interactions that predict realistic saturation
properties of nuclear matter. We focus on estimating the theoretical
uncertainties due to variation of the resolution scale, the low-energy
couplings, as well as from the many-body method. The experimental two-neutron
and two-proton separation energies are reasonably well reproduced, with an
uncertainty range of about 5 MeV. The first excited 2+ energies also show
overall agreement, with a more narrow uncertainty range of about 500 keV. In
most cases, this range is dominated by the uncertainties in the Hamiltonian.Comment: 6 pages, 4 figure
Structure of the lightest tin isotopes
We link the structure of nuclei around Sn, the heaviest doubly magic
nucleus with equal neutron and proton numbers (), to nucleon-nucleon
() and three-nucleon () forces constrained by data of few-nucleon
systems. Our results indicate that Sn is doubly magic, and we predict
its quadrupole collectivity. We present precise computations of Sn
based on three-particle--two-hole excitations of Sn, and reproduce the
small splitting between the lowest and states. Our
results are consistent with the sparse available data.Comment: 8 pages, 4 figure
Saturation with chiral interactions and consequences for finite nuclei
We explore the impact of nuclear matter saturation on the properties and
systematics of finite nuclei across the nuclear chart. Using the ab initio
in-medium similarity renormalization group (IM-SRG), we study ground-state
energies and charge radii of closed-shell nuclei from He to Ni,
based on a set of low-resolution two- and three-nucleon interactions that
predict realistic saturation properties. We first investigate in detail the
convergence properties of these Hamiltonians with respect to model-space
truncations for both two- and three-body interactions. We find one particular
interaction that reproduces well the ground-state energies of all closed-shell
nuclei studied. As expected from their saturation points relative to this
interaction, the other Hamiltonians underbind nuclei, but lead to a remarkably
similar systematics of ground-state energies. Extending our calculations to
complete isotopic chains in the and shells with the valence-space
IM-SRG, the same interaction reproduces not only experimental ground states but
two-neutron-separation energies and first excited states. We also
calculate radii with the valence-space IM-SRG for the first time. Since this
particular interaction saturates at too high density, charge radii are still
too small compared with experiment. Except for this underprediction, the radii
systematics is, however, well reproduced. Our results highlight the importance
of nuclear matter as a theoretical benchmark for the development of
next-generation chiral interactions.Comment: 11 pages, 15 figures, 1 tabl
Construction and Performance of a Micro-Pattern Stereo Detector with Two Gas Electron Multipliers
The construction of a micro-pattern gas detector of dimensions 40x10 cm**2 is
described. Two gas electron multiplier foils (GEM) provide the internal
amplification stages. A two-layer readout structure was used, manufactured in
the same technology as the GEM foils. The strips of each layer cross at an
effective crossing angle of 6.7 degrees and have a 406 um pitch. The
performance of the detector has been evaluated in a muon beam at CERN using a
silicon telescope as reference system. The position resolutions of two
orthogonal coordinates are measured to be 50 um and 1 mm, respectively. The
muon detection efficiency for two-dimensional space points reaches 96%.Comment: 21 pages, 17 figure
Ground-State Electromagnetic Moments of Calcium Isotopes
High-resolution bunched-beam collinear laser spectroscopy was used to measure
the optical hyperfine spectra of the Ca isotopes. The ground state
magnetic moments of Ca and quadrupole moments of Ca were
measured for the first time, and the Ca ground state spin was
determined in a model-independent way. Our results provide a critical test of
modern nuclear theories based on shell-model calculations using
phenomenological as well as microscopic interactions. The results for the
neutron-rich isotopes are in excellent agreement with predictions using
interactions derived from chiral effective field theory including three-nucleon
forces, while lighter isotopes illustrate the presence of particle-hole
excitations of the Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets
Using the Penning trap mass spectrometer TITAN, we performed the first direct
mass measurements of 20,21Mg, isotopes that are the most proton-rich members of
the A = 20 and A = 21 isospin multiplets. These measurements were possible
through the use of a unique ion-guide laser ion source, a development that
suppressed isobaric contamination by six orders of magnitude. Compared to the
latest atomic mass evaluation, we find that the mass of 21Mg is in good
agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements
reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times,
respectively, resulting in a significant departure from the expected behavior
of the isobaric multiplet mass equation in both the A = 20 and A = 21
multiplets. This presents a challenge to shell model calculations using either
the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving
interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome
Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE
playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
- …
