1,956 research outputs found

    Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    Get PDF
    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub

    Rotor/body aerodynamic interactions

    Get PDF
    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented

    Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices

    Full text link
    As connected devices continue to decrease in size, we explore the idea of leveraging everyday surfaces such as tabletops and walls to augment the wireless capabilities of devices. Specifically, we introduce Surface MIMO, a technique that enables MIMO communication between small devices via surfaces coated with conductive paint or covered with conductive cloth. These surfaces act as an additional spatial path that enables MIMO capabilities without increasing the physical size of the devices themselves. We provide an extensive characterization of these surfaces that reveal their effect on the propagation of EM waves. Our evaluation shows that we can enable additional spatial streams using the conductive surface and achieve average throughput gains of 2.6-3x for small devices. Finally, we also leverage the wideband characteristics of these conductive surfaces to demonstrate the first Gbps surface communication system that can directly transfer bits through the surface at up to 1.3 Gbps.Comment: MobiCom '1

    Classical and Quantum Cosmology of Multigravity

    Get PDF
    Recently, a multigraviton theory on a simple closed circuit graph corresponding to the discretization of S1S^1 compactification of the Kaluza-Klein (KK) theory has been considered. In the present paper, we extend this theory to that on a general graph and study what modes of particles are included. Furthermore, we generalize it in a possible nonlinear theory based on the vierbein formalism and study classical and quantum cosmological solutions in the theory. We found that scale factors in a solution for this theory repeat acceleration and deceleration.Comment: 17 pages, 15 figures, RevTeX4.1, revised versio

    Irreducible characters of GSp(4, q) and dimensions of spaces of fixed vectors

    Full text link
    In this paper, we compute the conjugacy classes and the list of irreducible characters of GSp(4,q), where q is odd. We also determine precisely which irreducible characters are non-cuspidal and which are generic. These characters are then used to compute dimensions of certain subspaces of fixed vectors of smooth admissible non-supercuspidal representations of GSp(4,F), where F is a non-archimedean local field of characteristic zero with residue field of order q.Comment: 48 pages, 21 tables. Corrected an error in Table 16 for type V* representations (theta_11 and theta_12 were switched

    Percolation on the average and spontaneous magnetization for q-states Potts model on graph

    Full text link
    We prove that the q-states Potts model on graph is spontaneously magnetized at finite temperature if and only if the graph presents percolation on the average. Percolation on the average is a combinatorial problem defined by averaging over all the sites of the graph the probability of belonging to a cluster of a given size. In the paper we obtain an inequality between this average probability and the average magnetization, which is a typical extensive function describing the thermodynamic behaviour of the model

    Sonic-Point Model of Kilohertz Quasi-Periodic Brightness Oscillations in Low-Mass X-ray Binaries

    Full text link
    Strong, coherent, quasi-periodic brightness oscillations (QPOs) with frequencies ranging from about 300 Hz to 1200 Hz have been discovered with the Rossi X-ray Timing Explorer in the X-ray emission from some fifteen neutron stars in low-mass binary systems. Two simultaneous kilohertz QPOs differing in frequency by 250 to 350 Hertz have been detected in twelve of the fifteen sources. Here we propose a model for these QPOs. In this model the X-ray source is a neutron star with a surface magnetic field of 10^7 to 10^10 G and a spin frequency of a few hundred Hertz, accreting gas via a Keplerian disk. The frequency of the higher-frequency QPO in a kilohertz QPO pair is the Keplerian frequency at a radius near the sonic point at the inner edge of the Keplerian flow whereas the frequency of the lower-frequency QPO is approximately the difference between the Keplerian frequency at a radius near the sonic point and the stellar spin frequency. This model explains naturally many properties of the kilohertz QPOs, including their frequencies, amplitudes, and coherence. We show that if the frequency of the higher-frequency QPO in a pair is an orbital frequency, as in the sonic-point model, the frequencies of these QPOs place interesting upper bounds on the masses and radii of the neutron stars in the kilohertz QPO sources and provide new constraints on the equation of state of matter at high densities. Further observations of these QPOs may provide compelling evidence for the existence of a marginally stable orbit, confirming a key prediction of general relativity in the strong-field regime.Comment: 67 pages, including 15 figures and 5 tables; uses aas2pp4; final version to appear in the Astrophysical Journal on 1 December 199

    Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result

    Full text link
    We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for the Ising spin model defined on the Sierpinski carpet fractal. The theorem is inspired by the classical Peierls argument for the two dimensional lattice. Therefore, this exact result proves the existence of spontaneous magnetization for the Ising model in low dimensional structures, i.e. structures with dimension smaller than 2.Comment: 14 pages, 8 figure

    Magnetic Fields of Accreting X-Ray Pulsars with the Rossi X-Ray Timing Explorer

    Get PDF
    Using a consistent set of models, we parameterized the X-ray spectra of all accreting pulsars in the Rossi X-ray Timing Explorer database which exhibit Cyclotron Resonance Scattering Features (CRSFs, or cyclotron lines). These sources in our sample are Her X-1, 4U 0115+63, Cen X-3, 4U 1626-67, XTE J1946-274, Vela X-1, 4U 1907+09, 4U 1538-52, GX 301-2, and 4U 0352+309 (X Per). We searched for correlations among the spectral parameters, concentrating on how the cyclotron line energy relates to the continuum and therefore how the neutron star B-field influences the X-Ray emission. As expected, we found a correlation between the CRSF energy and the spectral cutoff energy. However, with our consistent set of fits we found that the relationship is more complex than what has been reported previously. Also, we found that not only does the width of the cyclotron line correlate with the energy (as suggested by theory), but that the width scaled by the energy correlates with the depth of the feature. We discuss the implications of these results, including the possibility that accretion directly affects the relative alignment of the neutron star spin and dipole axes. Lastly, we comment on the current state of fitting phenomenological models to spectra in the RXTE/BeppoSAX era and the need for better theoretical models of the X-Ray continua of accreting pulsars.Comment: 36 Pages, 9 Figures, 9 Tables, ApJ in pres

    A diagnosis on torque reversals in 4U 1626-67

    Full text link
    Several X-ray pulsars have been observed to experience torque reversals, which provide important observational clues to the interaction between the neutron star magnetic field and the accretion disk. We review the current models proposed for the torque reversals and discuss their viability based on the observations of the quasi-periodic oscillations (QPOs) in 4U 1626-67. Most of these models seem to be incompatible with the evolution of the QPO frequencies if they are interpreted in terms of the beat frequency model. We suggest that winds or outflows from the neutron star and the accretion disk may play an important role in accounting for the spin-down in disk-fed neutron stars.Comment: 7 pages, accepted for publication in A&
    corecore