1,956 research outputs found
Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution
A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub
Rotor/body aerodynamic interactions
A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented
Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices
As connected devices continue to decrease in size, we explore the idea of
leveraging everyday surfaces such as tabletops and walls to augment the
wireless capabilities of devices. Specifically, we introduce Surface MIMO, a
technique that enables MIMO communication between small devices via surfaces
coated with conductive paint or covered with conductive cloth. These surfaces
act as an additional spatial path that enables MIMO capabilities without
increasing the physical size of the devices themselves. We provide an extensive
characterization of these surfaces that reveal their effect on the propagation
of EM waves. Our evaluation shows that we can enable additional spatial streams
using the conductive surface and achieve average throughput gains of 2.6-3x for
small devices. Finally, we also leverage the wideband characteristics of these
conductive surfaces to demonstrate the first Gbps surface communication system
that can directly transfer bits through the surface at up to 1.3 Gbps.Comment: MobiCom '1
Classical and Quantum Cosmology of Multigravity
Recently, a multigraviton theory on a simple closed circuit graph
corresponding to the discretization of compactification of the
Kaluza-Klein (KK) theory has been considered. In the present paper, we extend
this theory to that on a general graph and study what modes of particles are
included. Furthermore, we generalize it in a possible nonlinear theory based on
the vierbein formalism and study classical and quantum cosmological solutions
in the theory. We found that scale factors in a solution for this theory repeat
acceleration and deceleration.Comment: 17 pages, 15 figures, RevTeX4.1, revised versio
Irreducible characters of GSp(4, q) and dimensions of spaces of fixed vectors
In this paper, we compute the conjugacy classes and the list of irreducible
characters of GSp(4,q), where q is odd. We also determine precisely which
irreducible characters are non-cuspidal and which are generic. These characters
are then used to compute dimensions of certain subspaces of fixed vectors of
smooth admissible non-supercuspidal representations of GSp(4,F), where F is a
non-archimedean local field of characteristic zero with residue field of order
q.Comment: 48 pages, 21 tables. Corrected an error in Table 16 for type V*
representations (theta_11 and theta_12 were switched
Percolation on the average and spontaneous magnetization for q-states Potts model on graph
We prove that the q-states Potts model on graph is spontaneously magnetized
at finite temperature if and only if the graph presents percolation on the
average. Percolation on the average is a combinatorial problem defined by
averaging over all the sites of the graph the probability of belonging to a
cluster of a given size. In the paper we obtain an inequality between this
average probability and the average magnetization, which is a typical extensive
function describing the thermodynamic behaviour of the model
Sonic-Point Model of Kilohertz Quasi-Periodic Brightness Oscillations in Low-Mass X-ray Binaries
Strong, coherent, quasi-periodic brightness oscillations (QPOs) with
frequencies ranging from about 300 Hz to 1200 Hz have been discovered with the
Rossi X-ray Timing Explorer in the X-ray emission from some fifteen neutron
stars in low-mass binary systems. Two simultaneous kilohertz QPOs differing in
frequency by 250 to 350 Hertz have been detected in twelve of the fifteen
sources. Here we propose a model for these QPOs. In this model the X-ray source
is a neutron star with a surface magnetic field of 10^7 to 10^10 G and a spin
frequency of a few hundred Hertz, accreting gas via a Keplerian disk. The
frequency of the higher-frequency QPO in a kilohertz QPO pair is the Keplerian
frequency at a radius near the sonic point at the inner edge of the Keplerian
flow whereas the frequency of the lower-frequency QPO is approximately the
difference between the Keplerian frequency at a radius near the sonic point and
the stellar spin frequency. This model explains naturally many properties of
the kilohertz QPOs, including their frequencies, amplitudes, and coherence. We
show that if the frequency of the higher-frequency QPO in a pair is an orbital
frequency, as in the sonic-point model, the frequencies of these QPOs place
interesting upper bounds on the masses and radii of the neutron stars in the
kilohertz QPO sources and provide new constraints on the equation of state of
matter at high densities. Further observations of these QPOs may provide
compelling evidence for the existence of a marginally stable orbit, confirming
a key prediction of general relativity in the strong-field regime.Comment: 67 pages, including 15 figures and 5 tables; uses aas2pp4; final
version to appear in the Astrophysical Journal on 1 December 199
Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result
We give a rigorous proof of the existence of spontaneous magnetization at
finite temperature for the Ising spin model defined on the Sierpinski carpet
fractal. The theorem is inspired by the classical Peierls argument for the two
dimensional lattice. Therefore, this exact result proves the existence of
spontaneous magnetization for the Ising model in low dimensional structures,
i.e. structures with dimension smaller than 2.Comment: 14 pages, 8 figure
Magnetic Fields of Accreting X-Ray Pulsars with the Rossi X-Ray Timing Explorer
Using a consistent set of models, we parameterized the X-ray spectra of all
accreting pulsars in the Rossi X-ray Timing Explorer database which exhibit
Cyclotron Resonance Scattering Features (CRSFs, or cyclotron lines). These
sources in our sample are Her X-1, 4U 0115+63, Cen X-3, 4U 1626-67, XTE
J1946-274, Vela X-1, 4U 1907+09, 4U 1538-52, GX 301-2, and 4U 0352+309 (X Per).
We searched for correlations among the spectral parameters, concentrating on
how the cyclotron line energy relates to the continuum and therefore how the
neutron star B-field influences the X-Ray emission. As expected, we found a
correlation between the CRSF energy and the spectral cutoff energy. However,
with our consistent set of fits we found that the relationship is more complex
than what has been reported previously. Also, we found that not only does the
width of the cyclotron line correlate with the energy (as suggested by theory),
but that the width scaled by the energy correlates with the depth of the
feature. We discuss the implications of these results, including the
possibility that accretion directly affects the relative alignment of the
neutron star spin and dipole axes. Lastly, we comment on the current state of
fitting phenomenological models to spectra in the RXTE/BeppoSAX era and the
need for better theoretical models of the X-Ray continua of accreting pulsars.Comment: 36 Pages, 9 Figures, 9 Tables, ApJ in pres
A diagnosis on torque reversals in 4U 1626-67
Several X-ray pulsars have been observed to experience torque reversals,
which provide important observational clues to the interaction between the
neutron star magnetic field and the accretion disk. We review the current
models proposed for the torque reversals and discuss their viability based on
the observations of the quasi-periodic oscillations (QPOs) in 4U 1626-67. Most
of these models seem to be incompatible with the evolution of the QPO
frequencies if they are interpreted in terms of the beat frequency model. We
suggest that winds or outflows from the neutron star and the accretion disk may
play an important role in accounting for the spin-down in disk-fed neutron
stars.Comment: 7 pages, accepted for publication in A&
- …
