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Recently, a multigraviton theory on a simple closed circuit graph corresponding

to the discretization of S1 compactification of the Kaluza-Klein (KK) theory has

been considered. In the present paper, we extend this theory to that on a general

graph and study what modes of particles are included. Furthermore, we generalize

it in a possible nonlinear theory based on the vierbein formalism and study classical

and quantum cosmological solutions in the theory. We found that scale factors in a

solution for this theory repeat acceleration and deceleration.
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I. INTRODUCTION

Both astronomical and cosmological data seem to require the presence of yet directly

undetected dark matter and dark energy in the universe. The necessity for these mysteri-

ous components occurs at distances where the gravitational interaction is not understood

sufficiently. This suspicious coincidence inspires a search for modifications of the general

relativity at large distances. It is important to study massive and multigraviton theory

for understanding cosmology and unification. In the linear-field theory, gravitons have the

Fierz-Pauli (FP) type masses [1]. But there is an ambiguity in its nonlinear generalization.

We studied thus far the linear multigraviton theory on a circle corresponding to S1 compact-

ification of the KK theory with dimensional deconstruction [2]. This model is an extended

version of Hamamoto’s model [3] for a massive graviton.
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In this paper, we construct the FP Lagrangian for multigravitons associated with a gen-

eral graph and investigate what modes of particles are included. Furthermore, we extend it

to nonlinear theory based on the vierbein formalism [4, 5]. Nonlinear extensions of multi-

graviton theory have been studied many authors [6]. In the present paper we focus on the

semiclassical sector of the theory which governs the evolution of the universe; in other words,

we will not consider nonlocal contributions and terms with higher derivatives in the possible

complete theory here.

The features of our model are following: (i) Gravitons as the fluctuation from Minkowski

space-time have the FP type masses [1]. (ii) This model is based on a generalized dimensional

deconstruction method. So, the mass spectrum in the model can be tuned more easily than

in the KK theory. (iii) The mass term has a reflection symmetry assigned at each vertex

and an exchange symmetry assigned at each edge of a graph.

In this paper, beginning with graph theoretical description, we introduce the dimensional

deconstruction [7, 8] and description of the linear theory of multigravity as the basis of our

model in Sec. II. A nonlinear extension of the model is proposed in Sec. III. In Sec. IV,

we consider the vacuum cosmological solutions of the case associated with the four-site

star graph and the four-site path graph. The study on the quantum cosmological model is

exhibited in Sec. V. Finally, we summarize our work and give remarks about the outlook in

Sec. VI.

II. MULTIGRAVITON THEORY ON A GENERAL GRAPH

A. FP on a graph

We consider the matrix representation of the graph theory.1 A graph G is a pair of V and

E, where V is a set of vertices (sites) while E is a set of edges (links). An edge connects two

vertices; two vertices located at the ends of an edge e are denoted as o(e) and t(e). Then,

we introduce two matrices, an incidence matrix and a graph Laplacian, associated with a

specific graph. The incidence matrix E represents the condition of connection or structure

of a graph, and the graph Laplacian ∆ can be obtained by EET , where ET is the transposed

1 Please see [9] for a brief review of application of graph theory to field theory, and textbooks [10, 11] for
algebraic graph theory.
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matrix of E. By use of these matrices, a quadratic form of vectors aT ∆a(= aTEETa) can

be written as a sum of (at(e) − ao(e))
2. If all ai (i = 1, 2, . . . ,#V ), the components of a, take

the same value, ETa = 0 and then ∆a = 0.

So, we consider the Lagrangian for massive gravitons hv
µν on each vertex with the

Stückelberg vector fields Ae
µ on each edge and a scalar field φv on each vertex:

Lm = L0 −
m2

2

∑

v∈V

[
hvµν(EEThµν)

v − hv(EETh)v
]

−2
∑

v∈V

[m(EAµ)v + ∂µφ
v] (∂νh

vµν − ∂µhv) − 1

2

∑

e∈E

(
∂µA

e
ν − ∂νA

e
µ

)2
, (2.1)

where L0 is the linearized Einstein-Hilbert Lagrangian:

L0 =
∑

v∈V

[
−1

2
∂λh

v
µν∂

λhvµν + ∂λh
vλ

µ∂νh
vνµ − ∂µh

vµν∂νh
v +

1

2
∂λh

v∂λhv

]
, (2.2)

and hv ≡ ηµνhv
µν .

This action is invariant under the following transformations:

hv
µν → hv

µν + ∂µξ
v
ν + ∂νξ

v
µ, Ae

µ → Ae
µ +m(ET ξµ)

e − ∂µζ
e, φv → φv +m(Eζ)v, (2.3)

where ξv and ζe are parameters on each vertex and each edge respectively. The massive

modes of vector and scalar fields are absorbed by the massive modes of graviton fields due

to the symmetry à la Stückelberg.

Now we examine the gauge fixing of the Lagrangian. Suppose the following gauge fixing

terms:

Lgf = −
∑

v∈V

[
∂νh

vµν − 1

2
∂µhv −m(EAµ)v − ∂µφv

]2

−
∑

e∈E

[
∂µA

eµ − m

2
(ETh)e +m(ETφ)e

]2

, (2.4)

then, the gauge-fixed Lagrangian becomes

Lm + Lgf =
1

2
Hµν(∂2 −m2EET )

(
Hµν −

1

2
Hηµν

)

+Aµ(∂2 −m2ETE)Aµ + 3φ(∂2 −m2EET )φ , (2.5)

where Hµν = hµν + φηµν. Here the indices v and e, and the notion of sum over them are

omitted.

In the next section, we will see that the mass spectra of fields in the Lagrangian for

specific graphs with large number of vertices are similar to those of a five-dimensional model

with a compactified extra space.
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B. Dimensional deconstruction

It is assumed that we put fields on vertices or edges. An idea that there are four dimen-

sional fields on the sites (vertices) and links (edges), dubbed as dimensional deconstruction,

is introduced by Arkani-Hamed et al. [7, 8]. In this scheme, the square of mass matrix is

proportional to the Laplacian of the associated graph.

FIG. 1: The cycle graph C60.

In the case of a cycle graph (a ‘closed circuit’) with N sites (denoted as CN , and C60

is shown in Fig. 1 for example), when N becomes large, the model on the graph coincides

with the five-dimensional theory with S1 (circle) compactification. In other words, the mass

scale of the model f over N corresponds to the inverse of the circumference of the circle:

M2
` = 4f 2(sin π`/N)2 → M2

` = (2π`/L)2, (f/N → 1/L) . (2.6)

The mass spectrum is given by the eigenvalues of the graph Laplacian of CN , which can

be expressed as

∆ =




2 −1 0 · · · −1

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 2




. (2.7)

For a cycle graph, the linear graviton model presented in the previous subsection coincides

with the model proposed in Ref. [2]. The model is a most general linear multigraviton theory

on a generic graph.
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C. Particle content in the multigraviton theory on a graph

For this model, we investigate what modes of particles are contained. Although any graph

is available for the model, here we consider two types, a cycle graph CN and a path graph

PN . The path graph has a simple structure like a chain, and has two ends (i = 1 and N)

and the i-th vertex are adjacent to (i − 1)-th and (i + 1)-th vertices (1 < i < N). For

example, we show C4 and P4 in Fig. 2. The incidence matrix for C4 is defined as

FIG. 2: The cycle graph C4 and the path graph P4.

E(C4) =




1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1



, (2.8)

and then

E(C4)E(C4)
T =




2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2




= E(C4)
TE(C4) . (2.9)

The eigenvalues of EET are {0, 2, 2, 4} for C4.

On the other hand, the incidence matrix for P4 is given by

E(P4) =




1 0 0

−1 1 0

0 −1 1

0 0 −1



. (2.10)
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Thus

E(P4)E(P4)
T =




1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1



, (2.11)

and

E(P4)
TE(P4) =




2 −1 0

−1 2 −1

0 −1 2


 , (2.12)

are different in their sizes. The eigenvalues of EET are {0, 2 −
√

2, 2, 2 +
√

2} and those of

ETE are {2 −
√

2, 2, 2 +
√

2} for P4. For PN , it is known that the Laplacian eigenvalues

are 4 sin2 kπ
2N

(k = 0, 1, . . .N − 1). If we introduce a mass scale f and consider the large N

limit as in (2.6), we find 4f 2 sin2 kπ
2N

→
(

πk
L

)2
where f/N = 1/L. This spectrum corresponds

to that of the compactification on S1/Z2, where the circumference of S1 is 2L.

In the multigraviton theory associated with the cycle graph CN (#V = N, #E = N),

N − 1 massive spin-two’s, a massless spin-two, N − 1 massive vectors, a massless vector,

N − 1 massive scalars, and a massless scalar seem to be included, as seen from the gauge-

fixed Lagrangian (2.5). The mass spectra of different spin fields are the same, except for

zero modes. This is due to the fact that eigenvalues of EET and ones of ETE are the same

except for zero eigenvalues.

However, N − 1 massive spin two, a massless spin two, a massless vector, and a mass-

less scalar are left physically, because massive vectors and massive scalars are absorbed by

massive spin two fields to form massive gravitons with five degrees of freedom each.

Similarly, in the model associated with the path graph PN (#V = N, #E = N − 1),

N − 1 massive spin two’s, a massless spin two, and a massless scalar is left physically, the

massless vector mode is absent.

The limits of N to infinity in the cases of CN and PN realize the KK theory with S1 and

S1/Z2 compactification, respectively.
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III. NONLINEAR EXTENSION OF A MULTIGRAVITON THEORY ON A

TREE GRAPH

Now we will consider a nonlinear extension of the linear theory. Following Nibbelink

et al. [4, 5], we introduce a useful ‘tool’:

〈ABCD〉 ≡ −εabcdε
µνρσAa

µB
b
νC

c
ρD

d
σ, (3.1)

where ε is the totally antisymmetric tensor. Using this expression, we have the Einstein-

Hilbert term replacing A and B by vierbeins and C and D by the curvature 2-form. In

addition, because the fourth power of vierbein in the angle bracket is equal to the determi-

nant of vierbeins (〈eeee〉 = 〈e4〉 = 24|e|), this expression means that the Einstein-Hilbert

term and the cosmological term have the similar structure.

We now assume that the following term is assigned for each edge of a graph:

〈(e1e1 − e2e2)
2〉, (3.2)

where e1 and e2 are vierbeins at two ends of one edge. Note that this term has a reflection

symmetry e↔ −e at each vertex and an exchange symmetry e1 ↔ e2 at each edge.

In the weak field limit, i.e. e1 = η + f1, e2 = η + f2,

〈(e1e1 − e2e2)
2〉 = 8

(
([f1] − [f2])

2 −
[
(f1 − f2)

2]) +O(f 3) , (3.3)

where η is the Minkowski metric, and [f ] = trf for notational simplicity. This quadratic

term corresponds to the FP mass term.2

On the other hand, the Einstein-Hilbert term 1
2
|e|R contains the kinetic terms of a gravi-

ton in the lowest order up to the total derivative:

1

2
|e|R = −1

2
∂λfµν∂

λfµν + ∂λf
λ
µ∂νf

νµ − ∂µf
µν∂νf − 1

2
∂λf∂

λf +O(f 3) , (3.4)

and 1
2
R contains the following terms in the first order:

1

2
R = −∂λ∂λf + ∂µ∂νf

µν +O(f 2) . (3.5)

In the case of a tree graph (a graph with no closed circuit—the path graph PN is a

tree graph, for example), we have the nonlinear Lagrangian of multigraviton theory without

2 It is known that the asymmetric part of f can be omitted [12].
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higher derivative and nonlocal terms,

Lm =
1

2
exp Φ

∑

v∈V

|ev|Rv +
M2

24

∑

e∈E

〈(
eo(e)eo(e) − et(e)et(e)

)2
〉
, (3.6)

where Rv is the scalar curvature associated with ev and M2 ≡ 3m2/2. The scalar zero-mode

field Φ can be identified as φ1 = φ2 = · · · = Φ.

IV. CLASSICAL COSMOLOGY OF THE MULTIGRAVITON THEORY

Now we consider two vacuum cosmological models, associated with a four-site star graph

and a four-site path graph respectively. Both the star graph and the line graph are tree

graphs. The star graph consists of one central vertex and the other vertices adjacent to the

central one. The star graph K1,3 is shown in Fig. 3. The incidence matrix for K1,3 is

FIG. 3: The star graph K1,3.

E(K1,3) =




1 1 1

−1 0 0

0 −1 0

0 0 −1



. (4.1)

Thus

E(K1,3)E(K1,3)
T =




3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1



, (4.2)
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and

E(K1,3)
TE(K1,3) =




2 1 1

1 2 1

1 1 2


 . (4.3)

One can see that the eigenvalues of EET are {0, 1, 1, 4} and those of ETE are {1, 1, 4} for

the star graph K1,3. For K1,N−1, N eigenvalues of the Laplacian are {0, 1, . . . , 1, N}. The

degeneracy of N − 2 eigenvalues (= 1) is apparently due to the symmetry of the star graph.

In the case of the star graph, the associated Lagrangian for multigravitons is the following;

Lstar =
1

2
exp Φ

4∑

i=1

|ei|Ri +
M2

24

4∑

i=2

〈
(e1e1 − eiei)

2
〉
, (4.4)

where, e1 is on the center of the graph. On the other hand, the Lagrangian of the case of

the path graph is

Lpath =
1

2
exp Φ

4∑

i=1

|ei|Ri +
M2

24

3∑

i=1

〈
(eiei − ei+1ei+1)

2
〉
, (4.5)

where, e1 and e4 are on each end of the graph.

Now let us introduce the setting for cosmology. We assume the homogeneous universe

with a spatially-constant scalar field Φ(t) and the following metric;

gµνdx
µdxν = −e−Φ(t)dt2 + e−Φ(t)A2

i (t)(dr
2 + r2dΩ2) , (4.6)

where Ai(t) (i = 1, · · · , 4) are scale factors. Then,

〈
(eiei − ejej)

2
〉

= e−2Φ(t)(eai(t) − eaj(t))(e2ai(t) − e2aj(t)) , (4.7)

where ai(t) ≡ lnAi(t).

We show the results of numerical calculations for the two models on the same appropriate

initial conditions in Fig. 4 and Fig. 5. In both cases the scalar field Φ behaves similarly and

in each case scale factors repeat the increase and the decrease. The oscillation of the scale

factors in the path graph case include more different modes than that of the scale factors in

the case of the star graph where the degeneracy of eigenvalues exists.

The star graph model has more symmetries than the path graph model. Therefore a lot

of modes in the star graph are degenerate, while there is no degeneracy in the spectrum

of the line graph. In the path graph case, increase of the number of sites gives the more
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complicated behaviors of the scale factors. On the other hand, in the star graph case, the

symmetries are preserved even if the number of sites increases. Therefore, the behaviors of

scale factors are much similar to those in the four-site model, essentially.

FIG. 4: Numerical solutions of a’s and Φ in the case of the four-site star graph.

V. QUANTUM COSMOLOGY OF THE MULTIGRAVITON THEORY

A. The Wheeler-DeWitt equation

In the previous section, we have seen the oscillatory behavior in the evolution of scale

factors. As a qualitative analysis, we only show the characteristic solutions. In fact, os-

cillations must be dependent on the initial conditions. What are the natural conditions?

To study the initial state, we have to consider quantum behavior of cosmology. Note that

quantum cosmology of multigraviton theory has never been studied yet as far as we know.

In this section we consider a minimal model based on a graph P2, which is shown in Fig. 6

This model has two gravitons,3 or two scale factors. The Lagrangian density is given by
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FIG. 5: Numerical solutions of a’s and Φ in the case of the four-site path graph.

FIG. 6: The path graph P2.

L =
1

2κ2
exp Φ [|eg|Rg + |ef |Rf ] +

M2

24
〈(egeg − efef)

2〉 + (surface terms) , (5.1)

where two graviton fields are labeled by g and f . This model in this case is very similar to

f -g gravity [17] or bigravity [18], but our model also contains a massless scalar field.

We take the metric ansatze as follows:

ds2
f = e−Φ(−N2dt2 + A2dΩ2

3) , (5.2)

ds2
g = e−Φ(−N2dt2 +B2dΩ2

3) . (5.3)

3 In this case, the eigenvalues of mass are 0 and 2M/
√

3.
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These choices are equivalent to field redefinitions gµν = e−Φg
(E)
µν so that

L =
1

2κ2

[
|e(E)

g |R(E)
g + |e(E)

f |R(E)
f

]
+ · · ·

and often quoted as the choice of the Einstein frame. Here we assume that A, B and Φ

depend only on t, and dΩ2
3 = dx2 + dy2 + dz2. The lapse function will be set as N = 1 after

the calculation (by the redefinition of t). Each metric is homogeneous, isotropic, and flat in

the Einstein frame, in the present analysis. Then the action reads
∫
Ldt =

∫
dt

[
3

2Nκ2

{
e3α(−4α̇2 + Φ̇2) + e3β(−4β̇2 + Φ̇2)

}

+NM2e−2Φ(eα + eβ)(eα − eβ)2
]
, (5.4)

where α = lnA , and β = lnB. The dot indicates the derivative with respect to t. The

conjugate variables are

πα = −12e3αα̇

Nκ2
, πβ = −12e3βα̇

Nκ2
, πΦ =

3(e3β + e3β)Φ̇

Nκ2
, (5.5)

thus we obtain the Hamiltonian of the universe as

H = N

[
−κ

2

24

{
e−3απ2

α + e−3βπ2
β

}
+

κ2

6(e3α + e3β)
π2

Φ −M2e−2Φ(eα + eβ)(eα − eβ)2

]
. (5.6)

From the Hamiltonian, we obtain the Wheeler-DeWitt (WDW) equation for the wave

function of the universe Ψ(α, β,Φ) [13]. Although there are ambiguities in the ordering, we

adopt the simple replacement of conjugate variables by the derivatives with respect to the

corresponding dynamical variables.4 The WDW equation for the present model is
[
−κ

2

24

{
e−3α ∂2

∂α2
+ e−3β ∂2

∂β2

}
+

κ2

6(e3α + e3β)

∂2

∂Φ2

+M2e−2Φ(eα + eβ)(eα − eβ)2
]
Ψ(α, β,Φ) = 0 . (5.7)

Now we introduce new variables x and y. They are defined as

x =
α + β

2
, y =

α− β

2
. (5.8)

Since
∂

∂α
=

1

2

(
∂

∂x
+

∂

∂y

)
,

∂

∂β
=

1

2

(
∂

∂x
− ∂

∂y

)
, (5.9)

4 Another plausible choice is adoption of the Laplacian in the minisuperspace. The qualitative behavior is
not changed by the choice of the operator orderings.
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the WDW equation (5.7) is rewritten as
[
−κ

2

6

{
cosh 3y (

∂2

∂x2
+

∂2

∂y2
) − 2 sinh 3y

∂2

∂x∂y

}
+

κ2

6 cosh 3y

∂2

∂φ2

+ 64M2e−4φe6x cosh y sinh2 y
]
Ψ(x, y, φ) = 0 , (5.10)

where we have also introduced φ = Φ/2 for simplicity.

B. Wave-packet solutions

To analyze the WDW equation (5.10), we assume the wave packet ansatz. The wave

packet in quantum cosmology was originally introduced in the references [14, 15], and is

utilized recently for various models such as in Ref. [16]. The use of the wave packet is

crucial for the case with no special ‘initial’ state served as in the case with the positively

curved homogeneous space.

The general form of the wave function is written by

Ψ(x, y, φ) =
∑

n

Cn(x, φ)ψn(x, y, φ) , (5.11)

where
[
−κ

2

6

∂2

∂y2
+ 64M2e−4φe6x cosh y sinh2 y

cosh 3y

]
ψn(x, y, φ) = En(x, φ)ψn(x, y, φ) . (5.12)

We assume that x and φ are slowly evolving variables, while y is a rapidly changing variable.5

In other words, we assume ∂x lnCn � 1 and ∂φ lnCn � 1.

Further we approximate the equation if y has a small amplitude. Then
[
−κ

2

6

∂2

∂y2
+ 64M2e6x−4φy2

]
ψn(x, y, φ) = En(x, φ)ψn(x, y, φ) . (5.13)

If x and φ are slowly-developing variables, this is no other than the equation for a harmonic

oscillator. The differential equation

ψ′′(y) − by2ψ(y) + cψ(y) = 0 (5.14)

has the solution

ψn(y) = exp

(
−1

2

[√
b
]
y2

)
Hn([b]1/4y) , (5.15)

5 This assumption leads to a universe with the increasing mean size, which looks like our present universe.
Some violent evolutions can occur in the very early universe, but we do not consider the possiblity here.
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where Hn is Hermite polynomial in the definition of Mathematica and ψ is normalizable if

c = cn = 2
√
b

(
n+

1

2

)
, n = integer (5.16)

Therefore the approximation gives the solution of (5.13) which leads to

En(x, φ) =
κ2

6
cn , (5.17)

where cn is given by (5.16) with

b =
6

κ2
64M2e6x−4φ . (5.18)

Now the differential equation for Cn becomes

[
−κ

2

6

∂2

∂x2
+
κ2

6

∂2

∂φ2
+ En(x, φ)

]
Cn(x, φ) = 0 , (5.19)

and can be approximated as

[
∂2

∂x2
− ∂2

∂φ2
− 16M

√
6

κ2

(
n +

1

2

)
e3x−2φ

]
Cn(x, φ) = 0 . (5.20)

Further rewriting variables as

X ≡ 3x− 2φ√
5

, Z ≡ 3φ− 2x√
5

, (5.21)

leads to [
∂2

∂X2
− ∂2

∂Z2
− 16M

√
6

κ2

(
n+

1

2

)
e
√

5X

]
Cn(X,Z) = 0 . (5.22)

Finally, separating variables as Cn(X,Z) = fk(Z)ϕkn(X) according to

[
∂2

∂Z2
+ k2

]
fk(Z) = 0 , (5.23)

tells us the solution

fk(Z) = e−ikZ , ϕkn(X) = K2ik/
√

5

[
2
√
ane

√
5X/2

√
5

]
, (5.24)

where Kν is the modified Bessel function of the second kind with

an = 16M

√
6

κ2

(
n+

1

2

)
. (5.25)
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The wave packet can be written in the form

Ψ =

∞∑

n=0

ψn(y)

∫ ∞

−∞
dk An(k)K2ik/

√
5

[
2
√
ane

√
5X/2

√
5

]
e−ikZ . (5.26)

The wave function behaves oscillatory in the region X < 0 and exponentially damps in

the region X > 0. This is because the exponential potential ‘wall’ in (5.22). The amplitude

with respect to X has a maximum peak at X ∼ 0 independently to k. Therefore the general

wave packet, in which A(k) is taken to be a Gaussian, has a peak at X ∼ 0, because other

peaks are destructively superposed.

The universe with X ∼ 0 is preferred in general. Even in classical solution, oscillatory y

leads to x ∼ 2/3φ can be confirmed.

C. Comparison to the case with no oscillation

If we assume ‘classically’ y ∼ 0, i.e., assume α = β, WDW equation reads

[
∂2

∂x2
− ∂2

∂φ2

]
ψ = 0 , (5.27)

or [
∂2

∂X2
− ∂2

∂Z2

]
ψ = 0 . (5.28)

The solution of this differential equation is:

ψ = f1(x− φ) + f2(x + φ) = g1(X − Z) + g2(X + Z) . (5.29)

This shows much different behaviors from the ‘correct’ solution of the WDW equation. No

typical peak can be expected. This is rather trivial, but this comparison reminds us the fact

that there is at least zero-point oscillation in any oscillatory quantum system.

VI. CONCLUSION AND OUTLOOK

We have studied the simple and Lorentz-invariant theory of multigraviton, and have

shown typical cosmological solutions. We focused our attention on the models associated

with the four-site star graph and the path graph and found that vacuum cosmological so-

lutions with the scale factors show the repeated accelerating and decelerating expansions.
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The differences between these two models were discussed from a viewpoint about symme-

tries. By using a simplest model, we also qualitatively showed that the oscillatory behavior

is considered as necessary in quantum universe. We should investigate more plausible and

applicable solutions for classical as well as quantum cosmology, including usual matter.

To this end, we should study how the gravitons and the scalar field couples to various

matter fields. To consider various coupled fields, incorporation of supersymmetry or su-

pergravity is also of much interest. Permitting higher derivative terms and nonlocal terms

in the action will bring more possibilities to the completion of nonlinearity and be worth

studying still.

As the future works, from the mathematical point of view, it is interesting to construct

models with the use of generic graphs, such as weighted graphs, fractals, and so on.
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