1,399 research outputs found

    Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning.

    Get PDF
    Identifying the immunogenic proteins that elicit pathogen-specific T cell responses is key to rational vaccine design. While several approaches have succeeded in identifying major histocompatibility complex (MHC) class I bound peptides that stimulate CD8+ T cells, these approaches have been difficult to extend to peptides presented by MHC class II molecules that stimulate CD4+ T cells. We describe here a novel strategy for identifying CD4+ T cell-stimulating antigen genes. Using Listeria monocytogenes-specific, lacZ-inducible T cells as single-cell probes, we screened a Listeria monocytogenes genomic library as recombinant Escherichia coli that were fed to macrophages. The antigen gene was isolated from the E. coli clone that, when ingested by the macrophages, allowed generation of the appropriate peptide/MHC class II complex and T cell activation. We show that the antigenic peptide is derived from a previously unknown listeria gene product with characteristics of a membrane-bound protein

    Magnetic Field Geometry in "Red" and "Blue" BL Lacs

    Full text link
    We compare the systematics of the magnetic field geometry in the "red" low-energy peaked BL Lacs (LBLs) and "blue" high-energy peaked BL Lacs (HBLs) using VLBI polarimetric images. The LBLs are primarily "radio--selected" BL Lacs and the HBLs are primarily "X-ray selected". In contrast to the LBLs, which show predominantly transverse jet magnetic fields, the HBLs show predominantly longitudinal fields. Thus, while the SED peaks of core-dominated quasars, LBLs and HBLs form a sequence of increasing frequency, the magnetic field geometry does not follow an analogous sequence. We briefly investigate possible connections between the observed parsec-scale magnetic field structures and circular polarization measurements in the literature on various spatial scales.Comment: 12 pages, 5 figures, Proceedings of the Amsterdam workshop on "Circular polarisation from relativistic jet sources", to be published in Astrophysics and Space Science, eds. Rob Fender & J-P Macquar

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag�ZnO nanomaterial

    Get PDF
    Zinc oxide nanoparticles (ZnO Nps) and silver doped zinc oxide nanoparticles (Ag�ZnO Nps) were prepared using nitrates of zinc and silver as oxidizers and succinic acid as a fuel through solution combustion synthesis (SCS) at 400 °C. The synthesized materials were characterized by various analytical techniques such as XRD, FTIR, Raman UV�vis, PL, SEM, EDX and TEM. The synthesized nanomaterials were tested for the photocatalytic degradation of methylene blue and the result reveal that Ag�ZnO Nps shows the better photocatalytic activity compared to undoped ZnO Nps. Biodiesel production from Simarouba oil shows that Ag�ZnO Nps acts as good catalyst compare to ZnO Nps, we have also developed sensor which showed a linearity in the concentration range 50�350 nM and limit of detection was found to be 3.5 and 3.8 nM (3�) for lead and cadmium respectively. Further we have examined the antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. © 2017 Elsevier Lt

    Quantum error-correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    Get PDF
    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are LDPC codes with linear rate and distance nϵn^\epsilon. Their rate is evaluated via Euler characteristic arguments and their distance using Z2\mathbb{Z}_2-systolic geometry. This construction answers a queston of Z\'emor, who asked whether homological codes with such parameters could exist at all.Comment: 21 page

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Parsec-scale Magnetic-Field Structures in HEAO-1 BL Lacs

    Get PDF
    We present very long baseline interferometry polarization images of an X-ray selected sample of BL Lacertae objects belonging to the first High Energy Astronomy Observatory (HEAO-1) and the ROSAT-Green Bank (RGB) surveys. These are primarily high-energy-peaked BL Lacs (HBLs) and exhibit core-jet radio morphologies on pc-scales. They show moderately polarized jet components, similar to those of low-energy-peaked BL Lacs (LBLs). The fractional polarization in the unresolved cores of the HBLs is, on average, lower than in the LBLs, while the fractional polarizations in the pc-scale jets of HBLs and LBLs are comparable. However a difference is observed in the orientation of the inferred jet magnetic fields -- while LBL jets are well-known to preferentially exhibit transverse magnetic fields, the HBL jets tend to display longitudinal magnetic fields. Although a `spine-sheath' jet velocity structure, along with larger viewing angles for HBLs could produce the observed magnetic field configuration, differences in other properties of LBLs and HBLs, such as their total radio power, cannot be fully reconciled with the different-angle scenario alone. Instead it appears that LBLs and HBLs differ intrinsically, perhaps in the spin rates of their central black holes.Comment: 41 pages, 21 figures, accepted for publication in MNRA

    The Nuclear Reddening Curve for Active Galactic Nuclei and the Shape of the Infra-Red to X-Ray Spectral Energy Distribution

    Get PDF
    We present extinction curves derived from the broad emission lines and continua of large samples of both radio-loud and radio-quiet AGNs. The curves are significantly flatter in the UV than are curves for the local ISM. The reddening curves for the radio-quiet LBQS quasars are slightly steeper than those of the radio-loud quasars in the UV, probably because of additional reddening by dust further out in the host galaxies of the former. The UV extinction curves for the radio-loud AGNs are very flat. This is explicable with slight modifications to standard MRN dust models: there is a relative lack of small grains in the nuclear dust. Our continuum and broad-emission line reddening curves agree in both shape and amplitude, confirming that the continuum shape is indeed profoundly affected by reddening for all but the bluest AGNs. With correction by our generic extinction curve, all of the radio-loud AGNs have continuous optical-UV spectra consistent with a single shape. We show that radio-quiet AGNs have very similar intrinsic UV to optical shape over orders of magnitude in luminosity. We also argue that radio-loud and radio-quiet AGNs probably share the same underlying continuum shape and that most of the systematic differences between their observed continuum shapes are due to higher nuclear reddening in radio-selected AGNs, and additional reddening from dust further out in the host galaxies in radio-quiet AGNs. Our conclusions have important implications for the modelling of quasar continua and the analysis of quasar demographics.Comment: 41 pages, including 6 figures and 3 tables. To appear in ApJ vol. 614, October 20 issue. Some slight wording changes. Some additional references added. Small changes in the model fit in section 6.2, to the analytical fit in the Appendix, and to the tabulated reddening curve in the Appendi
    corecore